Attachment A Flow Frequency Analysis

MEMORANDUM

DEPARTMENT OF ENVIRONMENTAL QUALITY Piedmont Regional Office

4949-A Cox Road Glen Allen, Virginia 23060

SUBJECT: Flow Frequency Determination / 303(d) Status

Hanover Courthouse STP - VA0062154

TO: Laura Galli

FROM: Jennifer Palmore, P.G.

DATE: May 22, 2014

COPIES: File

The Hanover Courthouse STP discharges to the Pamunkey River near Hanover, VA. The outfall is located at rivermile 8-PMK088.63. Flow frequencies have been requested for use in developing effluent limitations for the VPDES permit.

The USGS has operated a continuous record gage on the Pamunkey River near Hanover, VA (#01673000) since 1941. However, the river has been regulated by the Lake Anna Dam since 1972; therefore, only the flows recorded after 1972 were used to calculate the flow frequencies. The gage is located at Normans Bridge (Route 614), which is approximately 6 miles downstream from the discharge. The flow frequencies for the discharge point were determined by drainage area proportions and are presented below.

Pamunkey River near Hanover, VA (#01673000)

Drainage Area: 1,081 mi²
Statistical period: 1972-2003
High Flow Months: December – May

1Q30 = 34 cfs High Flow 1Q10 = 117 cfs 1Q10 = 46 cfs High Flow 7Q10 = 134 cfs 7Q10 = 52 cfs High Flow 30Q10 = 200 cfs

30Q10 = 59 cfs HM = 285 cfs

30Q5 = 75 cfs

Pamunkey River at discharge point:

Drainage Area = 1,073 mi²

1Q30 = 34 cfs (22 MGD) High Flow 1Q10 = 116 cfs (75 MGD) 1Q10 = 46 cfs (30 MGD) High Flow 7Q10 = 133 cfs (86 MGD) 7Q10 = 52 cfs (33 MGD) High Flow 30Q10 = 199 cfs (128 MGD)

30Q10 = 59 cfs (38 MGD) HM = 283 cfs (183 MGD)

30Q5 = 74 cfs (48 MGD)

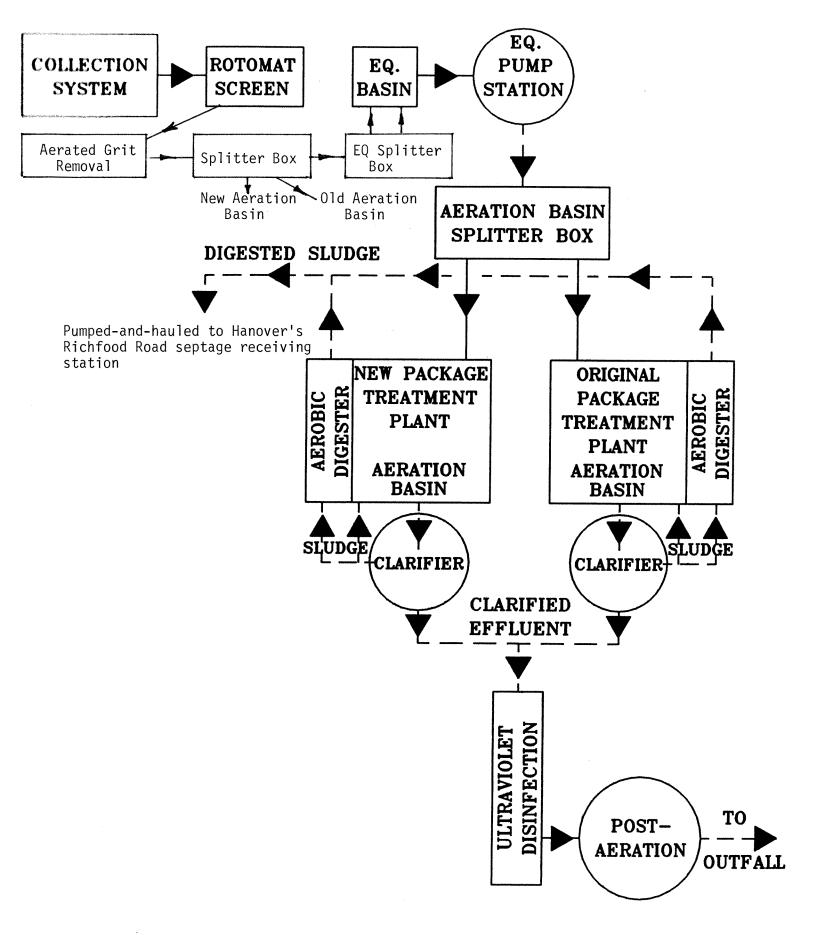
This analysis does not address any withdrawals, discharges, or springs lying between the gauge and the discharge point.

During the 305(b)/303(d) Integrated Water Quality Assessment, the Pamunkey River was considered a Category 5A water ("A Water Quality Standard is not attained. The water is impaired or threatened for one or more designated uses by a pollutant(s) and requires a TMDL (303d list)." The applicable fact

sheet is attached. The water was assessed as not supporting of the Recreation Use based on E. coli exceedances. The Aquatic Life, Fish Consumption, and Wildlife Uses were fully supporting.

The STP was addressed in the Chesapeake Bay TMDL, which was approved by the EPA on 12/29/2010. The TMDL allocates loads for total nitrogen, total phosphorus, and total suspended solids to protect the dissolved oxygen and submerged aquatic vegetation acreage criteria in the Chesapeake Bay and its tidal tributaries. The discharge is included in the aggregated loads for non-significant wastewater dischargers in the tidal freshwater Pamunkey River estuary (PMKTF). The nutrient allocations are administered through the Watershed Nutrient General Permit; the TSS allocations are considered aggregated and facilities with technology-based TSS limits are considered to be in conformance with the TMDL.

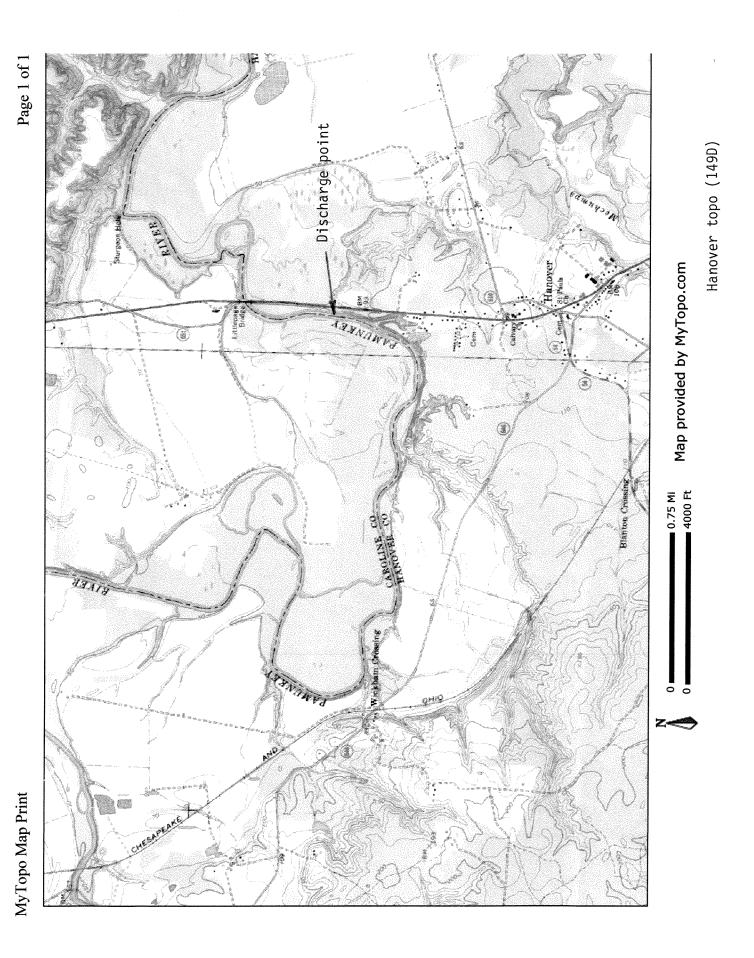
In addition, the discharge is being addressed in the draft Pamunkey River Watershed TMDL. The draft TMDL proposes an E. coli wasteload allocation of 1.39E+11 cfu/year.

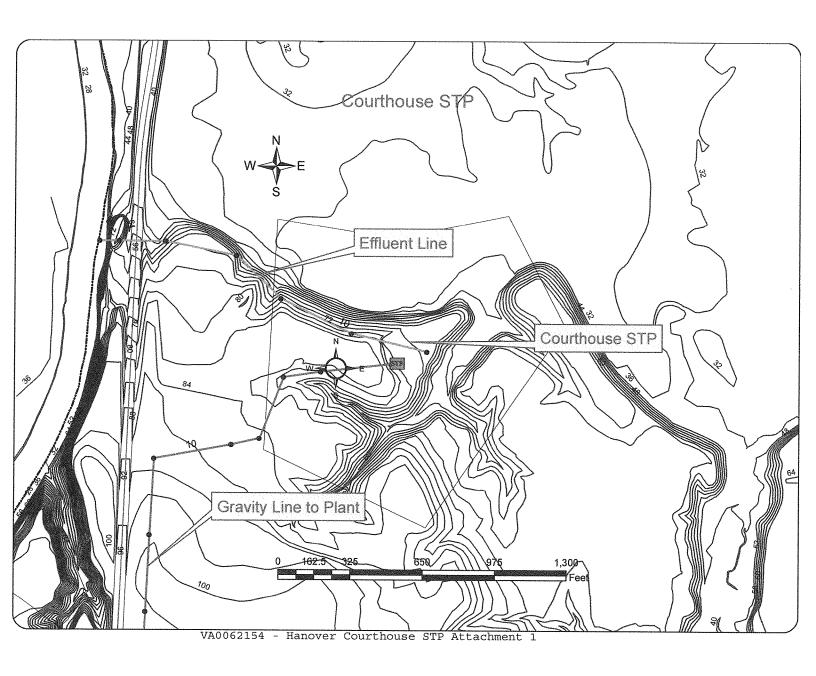

Water quality monitoring data is attached. Field data was collected at station 8-PMK088.11, which is located just downstream of the outfall at the Route 301 bridge. Hardness data from station 8-PMK082.34 was used; the station is located at the Route 614 bridge and is co-located with the stream gage.

The Pamunkey River has historically been considered a Tier 2 water and the DEQ's antidegradation policy has been applied to all modeling for the facility. Data from the above stations is acceptable and the Tier 2 status should be continued.

If you have any questions concerning this analysis, please let me know.

Attachment B


Facility Diagram


WASTEWATER TREATMENT PLANT FLOW SCHEMATIC

Attachment C

Location Map

http://map-pass.mytopo.com/maps/print_mytopo.asp?print=20&scale=8&layer=DRG&layer=HILLSHADE&lat=37.781... 7/23/2009

Attachment D

Ambient Data

								Specific
Station ID	Collection Date	Depth Desc	Depth	Temp Celcius	Field Ph	Do Probe	Do Winkler	Conductance
8-PMK088.11	6/3/1969		1	26.67	7.5		7.2	
8-PMK088.11	9/2/1969		1	22.22	6.5		6.6	
8-PMK088.11	2/4/1970		1	2.22	6.7		12	
8-PMK088.11	3/19/1970		1	5.56	6.8		12.69	
8-PMK088.11	4/14/1970		1	12.22	6.8		9.9	
8-PMK088.11	5/7/1970		1	15.56	8		8.9	
8-PMK088.11	5/31/1970		1	19.44	7.5		8.2	
8-PMK088.11	7/11/1970		1		7.5		7	
8-PMK088.11	9/2/1970		1	22.22	7		8.4	
8-PMK088.11	10/29/1970		1	13.89	6.7		9.4	
8-PMK088.11	11/22/1970		1	7.22	6.5		9	
8-PMK088.11	11/22/1970		1	7.22	6.5		9	
8-PMK088.11	12/10/1970		1	4.44	7		13.79	
8-PMK088.11	1/13/1971		1	3.33	6.8		11.79	
8-PMK088.11	2/10/1971		1	0.00	6		12.79	
8-PMK088.11	3/11/1971		1	7.78	6.7		12.19	
8-PMK088.11	4/21/1971		1	17.78	6.8		9.2	
8-PMK088.11	5/6/1971		1	17.78	6.3		9.4	
8-PMK088.11	6/1/1971		1	17.78	7.2		8.8	
8-PMK088.11	7/11/1971		1	27.78	6.3		6.4	
8-PMK088.11	8/30/1971		1	23.33	6.2		6.4	
8-PMK088.11	9/2/1971		1	23.33	6.7		6.4	
8-PMK088.11	10/20/1971		1	15.56	6.8		10	
8-PMK088.11	11/10/1971		1	8.89	6.3		10.79	
8-PMK088.11	12/13/1971		1	7.78	6.8		11.59	
8-PMK088.11	1/3/1972		1	7.78	6.8		12.79	
8-PMK088.11	2/16/1972		1	7.78	0.0		11.59	
8-PMK088.11	3/5/1972		1	10.56	6.7		11.39	
8-PMK088.11	4/3/1972		1	9.44	6.9		11.59	
8-PMK088.11	8/18/1972		1	22.22	7		8	
8-PMK088.11	8/31/1972		1	24.44	7		7	
8-PMK088.11	10/31/1972		1	12.22	6.5		10	
8-PMK088.11	12/11/1972		1	8.89	6.9		10.59	
8-PMK088.11	1/19/1973		1	6.11	6.7		8.4	
8-PMK088.11	2/16/1973		1	2.78	6.7		12.59	
8-PMK088.11	3/26/1973		1	10	6.8		10.59	
8-PMK088.11	4/17/1973		1	13.33	6.9		10.59	
8-PMK088.11	5/28/1973		1		7		8.6	
8-PMK088.11	6/19/1973		1		7.1		7	
8-PMK088.11	7/30/1973		1	26.67	7.1		7.6	
8-PMK088.11	8/19/1973		1	25.56	7.1		8	
8-PMK088.11	9/17/1973		1	23.33	7.1		7.8	
8-PMK088.11	10/12/1973		1	18.89	6.9		7.4	
8-PMK088.11	11/14/1973		1	10.56	7		10.79	
8-PMK088.11	12/3/1973		1	5.56	6.8		10.79	
8-PMK088.11	1/17/1974		1	6.11	7		11.39	
8-PMK088.11	2/20/1974		1	5.56	6.9		11.69	
8-PMK088.11	3/4/1974		1	5.56	7.2		11.69	
8-PMK088.11	4/16/1974		1	15.56	6.6		11.39	
			1	16.67				
8-PMK088.11	5/13/1974				7		8.8	
8-PMK088.11	6/12/1974		1	23.33	7		7.4	
8-PMK088.11	7/15/1974		1	26.67	7		7.6	
8-PMK088.11	8/11/1974		1	23.33	7.3		7.8	
8-PMK088.11	9/20/1974		1	22.22	7		9	
8-PMK088.11	10/8/1974		1	12.22	7.3		9.6	
8-PMK088.11	12/13/1974	১	1	7.22	6.3		11.19	

								Specific
Station ID		-	•	Temp Celcius		Do Probe		Conductance
8-PMK088.11	2/10/1975		1	3.89	7		13.89	
8-PMK088.11	3/20/1975		1	7.78	7.1		10	
8-PMK088.11	4/2/1975		1	13.33	7		9.9	
8-PMK088.11	5/6/1975		1	17.22	7		9	
8-PMK088.11	6/5/1975		1	22.22	7		7.6	
8-PMK088.11	7/15/1975		1	22.22	6.5		7.2	
8-PMK088.11	7/30/1975		1	25.56	7		6.6	
8-PMK088.11	8/28/1975		1	26.67	7		7.4	
8-PMK088.11	9/9/1975		1	23.33	7		7.8	
8-PMK088.11	10/17/1975		1	17.78	7.5		7.8	
8-PMK088.11	11/13/1975		1	14.44	6.7		9	
8-PMK088.11	12/1/1975		1	9.44	7		10.69	
8-PMK088.11	5/10/1976		1	17.78	7.6		9	
8-PMK088.11	6/2/1976		1	17.22	7.5		7.5	
8-PMK088.11	7/6/1976		1		7.5		8	
8-PMK088.11	8/18/1976		1		7.3		7.6	
8-PMK088.11	10/11/1976		1	16.11	7		8	
8-PMK088.11	2/28/1977		1	10	7.5		11.19	
8-PMK088.11	4/6/1977		1	12	7.5		9.5	
8-PMK088.11	5/12/1977		1	16	7.5		6.8	
8-PMK088.11	6/8/1977		1	21	7.8		9.1	
8-PMK088.11	8/17/1977		1	2.9	7.3		6.8	
8-PMK088.11	11/15/1977		1	8	7.1		10.5	
8-PMK088.11	12/14/1977		1	0.9	7.4		12	
8-PMK088.11	1/10/1978		1	0.8	7		11.79	
8-PMK088.11	3/6/1978		1	8	7.2		11.39	
8-PMK088.11	4/13/1978		1	17	9		9.4	
8-PMK088.11	6/6/1978		1	22	7		7.8	
8-PMK088.11	7/26/1978		1	27.5	7		6.6	
8-PMK088.11	8/7/1978		1	27	7		7	
8-PMK088.11	11/20/1978		1	10.5	7		10.4	
8-PMK088.11	12/13/1978		1	5	7.2		12	
8-PMK088.11	1/8/1979		1	5.5	7.3		11.6	
8-PMK088.11	3/22/1979		1	12	6.8		10.4	
8-PMK088.11	4/24/1979		1	16	7.5		9.2	
8-PMK088.11	6/14/1979		1	20	7		8.2	
8-PMK088.11	8/8/1979		0.3	28.5	7		6.2	600
8-PMK088.11	9/20/1979		0.3		7		8.4	
8-PMK088.11	10/16/1979		0.3		7		9.8	
8-PMK088.11	11/14/1979		0.3		6.9		9.6	
8-PMK088.11	7/10/1980		0.3		7		6.8	
8-PMK088.11	8/4/1980		0.3		7.1		6.4	
8-PMK088.11	9/8/1980		0.3		7.5		7.2	
8-PMK088.11	10/14/1980		0.3	14	6.8		9.3	
8-PMK088.11	1/5/2010		0.3	1.7	5.7	13.6		84
8-PMK088.11	2/4/2010		0.3		6.1	12.3		126
8-PMK088.11	3/1/2010		0.3		6.1	9.9		69
8-PMK088.11	4/15/2010		0.3		6.8			84
8-PMK088.11	5/5/2010		0.3	21.7	7	7.2		124
8-PMK088.11	6/1/2010		0.3		7	6.7		86
8-PMK088.11	7/1/2010		0.3		7.2	6.9		264
8-PMK088.11	8/2/2010		0.3	25.2	6.9	7		446
8-PMK088.11	9/1/2010	S	0.3	26.1	7.3	6.7		376
8-PMK088.11	10/4/2010	S	0.3	16.7	6.6	8.1		146
8-PMK088.11	11/1/2010		0.3	12.6	6.5			159
8-PMK088.11	12/1/2010	S	0.3	12	6.5	9.5		167

								Specific
Station ID	Collection Date	Depth Desc	Depth	Temp Celcius	Field Ph	Do Probe	Do Winkler	Conductance
8-PMK088.11	1/10/2011	S	0.3	2.2	6.3	13.3		153
8-PMK088.11	2/2/2011	S	0.3	6.4	6.5	13.8		134
8-PMK088.11	3/24/2011	S	0.3	14.4	6.6	9.4		94
8-PMK088.11	4/13/2011	S	0.3	17.2	6.9	8.2		101
8-PMK088.11	5/31/2011	S	0.3	24.9	7.1	6.7		139
8-PMK088.11	6/22/2011	S	0.3	23.5	7.3	7		95
8-PMK088.11	7/18/2011	S	0.3	25.2	7.3	6.9		268
8-PMK088.11	8/2/2011	S	0.3	26.7	7.5	6.3		332
8-PMK088.11	9/12/2011	S	0.3	23.3	6.8	6.2		96
8-PMK088.11	10/5/2011	S	0.3	15.9	6.6	9.6		119
8-PMK088.11	11/29/2011	S	0.3	12.6	6.7	9.2		113
8-PMK088.11	12/21/2011	S	0.3	9.59	6.74	11.02		87
8-PMK088.11	1/7/2014	S	0.3	4.18	6.79	13.43		83
8-PMK088.11	2/10/2014	S	0.3	3.89	7.05	12.9		93
8-PMK088.11	3/5/2014	S	0.3	4.53	7.54	12.52		81
8-PMK088.11	4/7/2014	S	0.3	13.53	7.28	9.35		120
8-PMK088.11	5/1/2014	S	0.3	14.26	6.5	7.94		45
90th Percentile				25.8	7.5			
10th Percentile				4.3	6.5			

Station ID	Collection Date Time	Depth Desc	Depth	Container Id Desc	HARDNESS, TOTAL (MG/L AS CACO3)
8-PMK082.34	11/21/1988	S	0.3	R	26
8-PMK082.34	02/13/1989 10:45	S	0.3	R	28
8-PMK082.34	03/13/1989 11:00	S	0.3	R	20
8-PMK082.34	04/11/1989 11:35	S	0.3	R	20
8-PMK082.34	05/04/1989 11:20	S	0.3	R	20
8-PMK082.34	07/10/1989 12:20	S	0.3	R	28
8-PMK082.34	08/31/1989 11:30	S	0.3	R	28
8-PMK082.34	10/04/1989 10:20	S	0.3	R	20
8-PMK082.34	12/06/1989 10:10	S	0.3	R	20
8-PMK082.34	01/22/1990 10:10	S	0.3	R	22
8-PMK082.34	02/14/1990 09:20	S	0.3	R	22
8-PMK082.34	03/14/1990 09:10	S	0.3	R	23
8-PMK082.34	04/17/1990 10:45	S	0.3	R	36
8-PMK082.34	05/10/1990 09:10	S	0.3	R	24
8-PMK082.34	06/13/1990 10:05	S	0.3	R	25
8-PMK082.34	07/11/1990 11:20	S	0.3	R	36
8-PMK082.34	08/08/1990 14:15	В	1	R	42
8-PMK082.34	09/10/1990 10:50	S	0.3	R	44
8-PMK082.34	10/10/1990 09:50	S	0.3	R	54
8-PMK082.34	11/19/1990 09:45	S	0.3	R	35
8-PMK082.34	12/06/1990 09:50	S	0.3	R	30
8-PMK082.34	01/03/1991 09:05	S	0.3	R	28
8-PMK082.34	02/19/1991 10:05	S	0.3	R	31
8-PMK082.34	03/05/1991 09:15	S	0.3	R	31
8-PMK082.34	04/02/1991 09:20	S	0.3	R	18
8-PMK082.34	05/01/1991 09.20	S	0.3	R	26
8-PMK082.34		S		R	
	06/12/1991 10:40	S	0.3	R	80 18
8-PMK082.34	07/15/1991 09:20	S	0.3	R	74
8-PMK082.34	10/09/1991 10:25	S	0.3	R	
8-PMK082.34	11/12/1991 10:45	S	0.3		82
8-PMK082.34	12/12/1991 10:55	S S	0.3	R	30
8-PMK082.34	01/08/1992 09:25	_	0.3	R	24
8-PMK082.34	02/05/1992 09:45	S	0.3	R	28
8-PMK082.34	03/09/1992 09:35	S	0.3	R	28
8-PMK082.34	04/06/1992 10:05	S	0.3	R	24
8-PMK082.34	05/05/1992 10:05	S	0.3	R	33
8-PMK082.34	06/02/1992 09:20	S	0.3	R	26
8-PMK082.34	07/01/1992 09:25	S	0.3	R	31
8-PMK082.34	07/07/1992 09:25	S	0.3	R	45
8-PMK082.34	08/12/1992 09:37	S	0.3	R	46
8-PMK082.34	09/14/1992 09:35	S	0.3	R	49
8-PMK082.34	10/14/1992 09:30	S	0.3	R	39
8-PMK082.34	11/16/1992 09:30	S	0.3	R	34
8-PMK082.34	01/13/1993 09:45	S	0.3	R	18
8-PMK082.34	02/10/1993 09:30	S	0.3	R	25
8-PMK082.34	04/13/1993 09:20	S	0.3	R	32
8-PMK082.34	06/08/1993 09:55	S	0.3	R	45
8-PMK082.34	07/08/1993 09:50	S	0.3	R	64
8-PMK082.34	08/05/1993 11:15	S	0.3	R	38
8-PMK082.34	11/23/1993 09:25	S	0.3	R	40
8-PMK082.34	12/06/1993 17:10	S	0.3	R	20

8-PMK082.34	01/12/1994 09:20	S	1	R	22
8-PMK082.34	01/13/1994 07:30	S	1	R	54
8-PMK082.34	02/15/1994 08:15	S	1	R	18
8-PMK082.34	03/30/1994 09:10	S	1	R	14
8-PMK082.34	04/26/1994 09:00	S	1	R	23
8-PMK082.34	05/24/1994 09:05	S	1	R	43
8-PMK082.34	06/23/1994 09:00	S	1	R	32
8-PMK082.34	09/26/1994 09:20	S	1	R	22
8-PMK082.34	10/20/1994 09:30	S	1	R	30
8-PMK082.34	11/29/1994 09:00	S	1	R	29
8-PMK082.34	12/13/1994 08:45	S	1	R	22
8-PMK082.34	02/13/1995 09:10	S	1	R	24
8-PMK082.34	03/05/1995 09:30	S	1	R	22
8-PMK082.34	03/07/1995 09:30	S	1	R	22
8-PMK082.34	05/09/1995 09:15	S	1	R	23
8-PMK082.34	06/22/1995 09:45	S	1	R	28
8-PMK082.34	07/06/1995 09:35	S	1	R	30
8-PMK082.34	08/15/1995 09:00	S	1	R	33
8-PMK082.34	09/05/1995 09:45	S	1	R	48
8-PMK082.34	10/10/1995 09:30	S	1	R	40
8-PMK082.34	11/08/1995 09:30	S	1	R	24
8-PMK082.34	12/04/1995 09:30	S	1	R	24
8-PMK082.34	01/16/1996 09:20	S	1	R	23
8-PMK082.34	02/12/1996 09:30	S	1	R	20
8-PMK082.34	04/15/1996 10:15	S	1	R	32
8-PMK082.34	05/21/1996 09:30	S	1	R	22
8-PMK082.34	06/04/1996 09:30	S	1	R	28
8-PMK082.34	07/09/1996 09:30	S	1	R	36
8-PMK082.34	09/10/1996 09:00	S	1	R	19
8-PMK082.34	10/15/1996 10:00	S	1	R	22
8-PMK082.34	11/05/1996 09:10	S	1	R	28
8-PMK082.34	12/03/1996 08:45	S	1	R	19
8-PMK082.34	01/07/1997 09:30	S	1	R	22
8-PMK082.34	02/04/1997 09:30	S	1	R	16.8
8-PMK082.34	03/04/1997 09:45	S	1	R	21
8-PMK082.34	04/08/1997 09:30	S	1	R	22.2
8-PMK082.34	05/06/1997 09:15	S	1	R	25.7
8-PMK082.34	06/10/1997 09:15	S	1	R	30
8-PMK082.34	08/11/1997 09:15	S	1	R	34.8
8-PMK082.34	09/09/1997 09:20	S	1	R	41
8-PMK082.34	10/07/1997 09:30	S	1	R	37.9
8-PMK082.34	11/05/1997 10:15	S	1	R	19.3
8-PMK082.34	12/04/1997 16:30	S	1	R	23.4
8-PMK082.34	01/05/1998 13:44	S	1	R	19.9
8-PMK082.34	02/02/1998 09:55	S	1	R	19.5
8-PMK082.34	03/02/1998 12:30	S	1	R	15.5
8-PMK082.34	04/06/1998 10:30	S	1	R	20
8-PMK082.34	05/11/1998 13:03	S	1	R	20.4
8-PMK082.34	06/09/1998 10:01	S	1	R	26.2
8-PMK082.34	07/07/1998 12:01	S	1	R	31.1
8-PMK082.34	08/04/1998 11:49	S	1	R	41.8
8-PMK082.34	09/08/1998 11:33	S	1	R	45.5
8-PMK082.34	10/06/1998 11:59	S	1	R	43.6
8-PMK082.34	11/09/1998 12:15	S	1	R	32
8-PMK082.34	12/08/1998 12:00	S	1	R	41
8-PMK082.34	12/08/1998 12:00	S	1	R	41

8-PMK082.34	02/09/1999 12:33	S	1	R	52
8-PMK082.34	03/11/1999 14:01	S	1	R	34
8-PMK082.34	04/06/1999 13:11	S	1	R	42
8-PMK082.34	05/03/1999 13:01	S	1	R	60
8-PMK082.34	06/08/1999 13:03	S	1	R	56.4
8-PMK082.34	07/06/1999 11:01	S	1	R	55.3
8-PMK082.34	08/03/1999 12:22	S	1	R	61.5
8-PMK082.34	09/07/1999 09:01	S	1	R	20.9
8-PMK082.34	10/05/1999 11:01	S	1	R	41.2
8-PMK082.34	11/02/1999 10:44	S	1	R	43.9
8-PMK082.34	12/08/1999 11:01	S	1	R	38.6
8-PMK082.34	01/12/2000 10:20	S	1	R	24.3
	02/08/2000 10:20	S	1	R	27.5
8-PMK082.34 8-PMK082.34	03/07/2000 12:00	S	1	R	20
		S	1	R	
8-PMK082.34	04/13/2000 11:30	S			20
8-PMK082.34	05/09/2000 12:30	S	1	R	28
8-PMK082.34	06/06/2000 11:38	S	1	R	30
8-PMK082.34	07/07/2000 13:30		1	R	29.1
8-PMK082.34	08/08/2000 11:59	S	1	R	34
8-PMK082.34	09/14/2000 11:33	S	1	R	41.5
8-PMK082.34	10/10/2000 11:59	S	1	R	51.5
8-PMK082.34	11/07/2000 10:44	S	1	R	51
8-PMK082.34	12/05/2000 11:11	S	1	R	35.3
8-PMK082.34	01/09/2001 11:11	S	1	R	35.6
8-PMK082.34	02/06/2001 12:12	S	1	R	35.6
8-PMK082.34	03/13/2001 11:11	S	1	R	15.3
8-PMK082.34	04/10/2001 09:44	S	1	R	25.4
8-PMK082.34	05/08/2001 11:01	S	1	R	30
8-PMK082.34	06/05/2001 10:33	S	1	R	27.3
8-PMK082.34	07/10/2001 11:14	S	1	R	29
8-PMK082.34	08/07/2001 12:15	S	1	S1	51
8-PMK082.34	09/04/2001 10:55	S	1	R	51.2
8-PMK082.34	10/02/2001 11:11	S	1	R	61.1
8-PMK082.34	11/05/2001 11:11	S	1	R	29.7
8-PMK082.34	12/04/2001 12:12	S	1	R	37.2
8-PMK082.34	01/14/2002 11:33	S	1	R	20.8
8-PMK082.34	02/12/2002 12:50	S	1	R	40.6
8-PMK082.34	03/12/2002 11:11	S	1	R	46.5
8-PMK082.34	04/09/2002 11:33	S	1	R	41.1
8-PMK082.34	05/14/2002 11:02	S	1	R	32.2
8-PMK082.34	06/11/2002 10:58	S	1	R	63.1
8-PMK082.34	07/09/2002 11:11	S	1	R	79.4
8-PMK082.34	08/06/2002 12:22	S	1	R	54.3
8-PMK082.34	09/16/2002 12:05	S	1	R	58.6
8-PMK082.34	10/08/2002 11:59	S	1	R	69.1
8-PMK082.34	11/05/2002 12:22	S	1	S1	75.4
8-PMK082.34	12/03/2002 11:01	S	1	R	29.3
8-PMK082.34	01/07/2003 11:44	S	1	R	26.6
8-PMK082.34	02/11/2003 12:12	S	1	R	29.9
Average					33.7

Attachment E

2012 Fact Sheets for 303(d) Waters

2012 Fact Sheets for 303(d) Waters

RIVER BASIN: York River Basin HYDROLOGIC UNIT: 02080106

STREAM NAME: Pamunkey River

TMDL ID: F12R-08-BAC 2012 IMPAIRED AREA ID: VAP-F12R-08

ASSESSMENT CATEGORY: 5A TMDL DUE DATE: 2020

IMPAIRED SIZE: 12.26 - Miles Watershed: VAP-F12R

INITIAL LISTING: 2008

UPSTREAM LIMIT: Confluence of South Anna and North Anna Rivers

DOWNSTREAM LIMIT: Mechumps Creek

The Pamunkey River from its start at the confluence of the South Anna and North Anna Rivers downstream to the confluence with Mechumps Creek.

CLEAN WATER ACT GOAL AND USE SUPPORT:

Recreation Use - Not Supporting

IMPAIRMENT: E. coli

During the 2008 cycle, the segment was assessed as not supporting of the Recreation Use based on E. coli violations at the Route 614 bridge (8-PMK082.34). During the 2012 cycle, the violation rate was 4/25. Sampling at 8-PMK088.11 was acceptable (1/12).

IMPAIRMENT SOURCE: Unknown

The source of the bacteria is considered unknown.

RECOMMENDATION: Problem Characterization

Attachment F Inspection and Site Visit Reports

MEMORANDUM

DEPARTMENT OF ENVIRONMENTAL QUALITY

Piedmont Regional Office

4949-A Cox Rd Glen Allen, VA 23060

(804) 527-5046

SUBJECT: Site Visit

TO: File

FROM: Laura Galli, PRO

DATE: August 26, 2014

COPIES: File

Facility Name: Hanover Courthouse STP

Permit Number: VA0062154

On August 26, 2014, I performed a site visit at the Hanover Courthouse Sewage Treatment Plant, which is located at 13500 Courthouse Road, Hanover, VA 23063. The site visit was coordinated with Barbara Mitchell and David Van Gelder, both of Hanover County Department of Public Utilities; both accompanied me during the tour of the facility.

The appearance of the grounds at the facility indicated that there is consistent maintenance, and it appeared clean and organized. The facility's lawn and other vegetation around the site looked well groomed.

The Hanover Courthouse STP has a design capacity of 80,000 GPD; the facility is an aeration activated sludge plant that includes a sewage pumping station, rotomat screening, grit channel, flow equalization basins, clarifiers, UV channel, post aeration tank, and drying beds (last used in 1995). A backup generator is available in the event of loss of electrical power.

As wastewater enters the treatment works, it is first screened through the rotomat and subsequently through the aerated grit channel to remove grit and larger debris. The wastewater then flows to a splitter box that has the function of distributing the flow to two equalization basins. Wastewater is pumped from each basin to the flow control box, where it flows to the splitter box prior to the aeration basin. Very little foam was observed in the aeration basin; no dead spots or excessive aeration were observed. The aeration basin splitter box is connected t a second, "old" aeration basin that is not currently used as the actual flow is well below the design flow (approximately 45,000 MGD); this basin currently contains very little wastewater and is covered in duckweeds. The aeration basin has an aerobic digester for sludge stabilization; the sludge is allowed to settle and is then decanted to the head of the plant via a submersible pump, and is then pumped and hauled to Hanover's Richfood Road septage receiving station.

The secondary clarifier immediately follows the aeration basin. There appeared to be good settling characteristics in the clarifier chamber. No floatable solids in the clarifier were noted.

The wastewater then enters the ultraviolet disinfection channel, which consists of 2-module banks of lights. Each module is alternatively cleaned on a weekly schedule, and each light is replaced annually.

Following disinfection, the wastewater enters a post aeration tank to further reduce the DO. The aeration provided looks appropriate.

The facility discharges directly to the Pamunkey River; the outfall is located approximately 0.5 miles north west of the facility, connected by an underground pipe. The outfall on the river was not observed during the site visit.

Generally, the plant looks in good working conditions with no strong or unusual odors at any location during the site visit.

COMMONWEALTH of VIRGINIA

DEPARTMENT OF ENVIRONMENTAL QUALITY PIEDMONT REGIONAL OFFICE 4949-A Cox Road, Glen Allen, Virginia 23060

Doug Domenech 4949-A Cox Road, Glen A Secretary of Natural Resources (804) 527-5020 Fax

4949-A Cox Road, Glen Allen, Virginia 2306 (804) 527-5020 Fax (804) 527-5106 www.deq.virginia.gov David K. Paylor Director

Michael P. Murphy Regional Director

December 28, 2010

Mr. David F. Van Gelder, Chief of Operations & Maintenance Hanover County PO Box 470 Hanover, VA 23069-0470

Re: Wastewater Facility and Laboratory Inspections; VPDES Permit No. VA0062154 – Hanover Courthouse WWTP, Hanover Co., VA

Dear Mr. Van Gelder,

Enclosed are the reports for the subject inspections performed on December 21, 2010. A response to the reports is not necessary as no issues resulted from the inspections.

If you have questions regarding the reports, please contact me at (804) 527-5055.

Sincerely,

Mike Dare Water Inspector

Enclosure

CC: DEQ - File B. Mitchell

VIRGINIA DEPARTMENT OF ENVIRONMENTAL QUALITY

Wastewater Facility Inspection Report

Revised 08/2001

Facility Name:	Hanover Courthouse WWTP	Facility I	No.:	VA0062154					
City/County:	Hanover	Inspecti	on Agency:	DEQ-PRO					
Inspection Date:	<u>December 21, 2010</u>	Date Fo	rm Completed:	<u>December 28, 2010</u>					
Inspector:	Mike Dare Hore 12-28-1	Time Sp	ent:	15 hrs. w/ travel & report					
Reviewed By: (KS	12/20/10 V 17/78/10	Unanno	unced Insp.?	<u>No</u>					
Inspection Date: December 21, 2010 128-10		FY-Sche	eduled Insp.?	<u>Yes</u>					
Present at Inspection	n: <u>Barbara Mitchell</u>								
TYPE OF FACILITY:									
<u>Domestic</u>		<u>Industrial</u>							
[] Federal [] Major	[] Major [[] Primary						
[x] Non-Federal [X] Minor	[] Minor [] Secondary						
Population Served:	Varies daily								
Number of Connection	s: The courthouse comple	x, jail, fire station, p	oost office and se	veral local businesses,					
	restaurants and homes								
TYPE OF INSPECTIO	N:								
[x] Routine	Date of last inspection	on: <i>June 28, 2006</i>							
[] Compliance	Agency: DEQ/PRO								
[]Reinspection	,								
EFFLUENT MONITOR	RING:								
October 2010 average	: BOD ₅ : <u>3.5</u> mg/L	TSS: <u>3.5</u> mg/L	- Flow	: <u>0.063</u> MGD					
CHANGES AND/OR CONSTRUCTION									
DATA VERIFIED IN PR	REFACE		[x] No changes						
Has there been any ne	w construction?		[x] No						
If yes, were plans and	specifications approved?	[] Yes [[] No* [x] N/A						
DEQ approval date:		N/A							

(A) P	LANT OPERATION AND MAINTENANCE								
1.	1. Class and number of licensed operators: Class I - 3; Class II - 1; Class IV - 1; Operator in Training - 1								
2.	Hours per day plant is staffed: 3+ hours/day								
3.	Describe adequacy of staffing:			[×] Good	[] Av	/erage	[]Poor*	
4.	Does the plant have an established progra	m for traini	ing personnel?	[×] Yes	[] No	o		
5 .	Describe the adequacy of the training prog	ram:		[x] Good	[] Av	/erage	[]Poor*	
6.	Are preventive maintenance tasks schedule	led?	<#	[x] Yes	[] No) *		
7.	Describe the adequacy of maintenance:			[x] Good	[]Av	erage	[]Poor*	
8.	Does the plant experience any organic/hyd	lraulic over	loading?	[]	Yes*	[x] N	0		
	If yes, identify cause and impact on plant <u>N/A</u>								
9.	Any bypassing since last inspection?		[] Yes*	[x] No					
10.	Is the on-site electric generator operational? [x] Yes					[] N/A			
11.	Is the STP alarm system operational?		[x] Yes	[] No *		[] N/A			
12.	How often is the standby generator exercis	ed?	[x] Weekly	[] Mont	ıly	[]Othe	er:		
	Power Transfer Switch?		[x] Weekly	[] Mont	ıly	[] Othe	er:		
	Alarm System?		[x] Weekly	[] Mont	nly	[] Othe	er:		
13.	When were the cross connection control de	evices last	tested on the p	otable wa	iter serv	ice? <u>9/</u>	<u>16/10</u>		
14.	Is sludge disposed in accordance with the	approved s	sludge disposal	plan?	[>	(] Yes	[] No*	[] N/A	
15.	Is septage received by the facility?	[] Yes	[x] No						
	Is septage loading controlled?	[] Yes	[] No *	[x	N/A				
	Are records maintained?	[] Yes	[]No*	[x]	N/A				
16.	Overall appearance of facility:	[x] Good	[] Averag	je []	Poor*				
Comments: #1 & 3) All the operators at the Doswell WWTP are trained to operate the Hanover Courthouse WWTP.									
#4) The training program includes the SAC course, VA Tech Short Course, DEQ courses, OJT.									
#11 & 12) Units equipped with alarms include the Rotamat, FEB, Blowers, Clarifier Drive, UV system, Plant Drain Sump and Generator. Alarm system has local signals and auto dialer.									
#14) Thickened liquid sludge is pumped and hauled to the Richfood Road Septage Receiving Station on the Henrico County WWTP Collection System.									

(B)	(B) PLANT RECORDS										
1.	Which of the following records does the plant maintain? Operational Logs for each unit process Instrument maintenance and calibration Mechanical equipment maintenance Industrial waste contribution (Municipal Facilities)	[x] Yes [x] Yes [x] Yes [] Yes	[] No* [] No* [] No* [] No*	[] N/A [] N/A [] N/A [x] N/A							
2.	What does the operational log contain? Visual Observations Flow Measurement Laboratory Results Process Adjustments Control Calculations Other:	[x] Yes [x] Yes [x] Yes [x] Yes [] Yes	[] No [] No [] No [] No* [x] No	[] N/A [] N/A [] N/A [] N/A							
3.	What do the mechanical equipment records contain: As built plans and specs? Spare parts inventory? Manufacturers instructions? Equipment/parts suppliers? Lubrication schedules? Other:	[x] Yes [x] Yes [x] Yes [x] Yes [x] Yes [x] Yes	[] No* [] No* [] No* [] No*	[] N/A [] N/A [] N/A [] N/A							
	Comments:	<u>None</u>									
4.	What do the industrial waste contribution records contain: Waste characteristics? Locations and discharge types? Impact on plant? Other: Comments:	(Applicable [] Yes [] Yes [] Yes <u>N/A</u> None	to municipa [] No* [] No* [] No*	al facilities only) [x] N/A [x] N/A [x] N/A							
5.	Are the following records maintained at the plant Equipment maintenance records Operational Log Industrial contributor records Instrumentation records Sampling and testing records	[x] Yes [x] Yes [] Yes [x] Yes [x] Yes	[] No* [] No* [] No* [] No* [] No*	[] N/A [] N/A [x] N/A [] N/A [] N/A							
6.	Are records maintained at a different location? Where are the records maintained?	site, all othe		records maintained on able at the Doswell							
7.	Were the records reviewed during the inspection?	<i>WWTP.</i> [x] Yes	[] No								
8.	Are the records adequate and the O & M Manual current? O&M Manual date written: Submitted 10/10/97 Date DEQ approved O&M: 11/13/97 - VDH	[x] Yes	[] No*	[] N/A							
9.	Are the records maintained for required 3-year period?	[x] Yes	[] No*								
Comments: #1 - An operational log is maintained; in addition, a separate notebook is maintained for UV system maintenance. In general the logs include notes for various treatment units, observations, equipment adjustment.											
#2 - Lab records are separate from the operational log.											

Facility No. VA0062154

						-			
(C)	SAMPLING								
1.	Are samplir	ng locations ca	pable of prov	iding representative samples?	[x] Y	es [] No*	[] N/A		
2.	Do sample	types correspo	and to those r	equired by the permit?	[x] Y	es [] No*	[] N/A		
3.	Do samplin	g frequencies	correspond to	[x] Y	es [] No*	[] N/A			
4.	Are compos	site samples co	ollected in pro	pportion to flow?	[x] Y	es [] No*	[] N/A		
5.	Are compos	site samples re	frigerated du	ring collection?	[x] Y	es [] No*	[] N/A		
6.	Does plant	maintain requi	red records o	f sampling?	[x] Ye	es [] No*	[] N/A		
7.	Does plant run operational control tests?					es [] No*	[] N/A		
Co	mments:								
(D)			_						
1.	Who perfor	ms the testing	?	[x] Plant/ Lab	rall MAACTO La	b. TCC and E	ooli hu		
	[x] Central Lab: <u>BOD by Doswell WWTP Lab; TSS and E. coli by</u> <u>Totopotomoy WWTP Lab</u>								
	[x] Commercial Lab - Name: TKN by J. R. Reed Lab								
	If plant performs any testing, complete 2-4.								
2.	What meth-	od is used for	chlorine analy	sis?		<u>N/A - UV Disinfection</u>			
3.	Is sufficient	equipment av	ailable to perl	form required tests?	[x] Ye				
4.	Does testin	g equipment a	ppear to be c	lean and/or operable?	[x] Ye	es [] No*	[] N/A		
Co	mments: Ple	ase see enclo	sed DEQ <i>La</i>	boratory inspection Report.					
(E)	FOR INDUS	TRIAL FACIL	TIES W/ TEC	CHNOLOGY BASED LIMITS NA	A				
1.	Is the produ	uction process	as described	in the permit application? (If no,	describe cha	nges in commer	nts)		
	[] Yes	[] No*	[x] N/A						
2.	Do product	s and production	on rates corre	espond to the permit application?	(If no, list diffe	erences in comm	nents section)		
	[] Yes	[] No*	[x] N /A						
3.	Has the Sta	ate been notifie	d of the chan	ges and heir impact on plant effl	luent?				
	[] Yes	[] No*	[x] N /A						
Co	mments: No	ne							

FOLLOW UP TO COMPLIANCE RECOMMENDATIONS FROM THE June 28, 2006 DEQ INSPECTION:

There were no compliance recommendations associated with the June 28, 2006 inspection.

FOLLOW UP TO GENERAL RECOMMENDATIONS FROM THE June 28, 2006 DEQ INSPECTION:

1. There were no general recommendations associated with the June 28, 2006 inspection.

INSPECTION REPORT SUMMARY

Compliance Recommendations/Request for Corrective Action:

1. There are no Compliance Recommendations at this time.

General Recommendations/Observations:

1. There are no General Recommendations at this time.

Comments:

One of two aeration basin – clarifier trains ("new plant") was in use at the time of inspection. Preceding the completion of collection system rehabilitation work in February 2006, both the "old plant" and "new plant" aeration basin – clarifier trains were required, due to I&I flow. There are two pump stations within the collection system: Pamunkey Regional Jail Pump Station and the Hanover Lift Station. Both stations are connected to the SCADA system and both have on site backup generator power. There was no evidence of a bypass having occurred at either station at the time of inspection.

Pamunkey Regional Jail Pump Station

Hanover Lift Station

Items evaluated during this inspection include (check all that apply):

[X] Yes	[] No		Operational Units
[] Yes	[x] No		O & M Manual
[X] Yes	[] No		Maintenance Records
[]Yes	[] No	[X] N/A	Pathogen Reduction & Vector Attraction Reduction
[X] Yes	[] No	[]N/A	Sludge Disposal Plan
[]Yes	[] No	[X] N/A	Groundwater Monitoring Plan
[] Yes	[] No	[X] N/A	Storm Water Pollution Prevention Plan
[X] Yes	[] No	[] N/A	Permit Special Conditions
[]Yes	Ì] No	[X] N/A	Permit Water Quality Chemical Monitoring
[X] Yes	[] No	[]N/A	Laboratory Records (see Lab Report)

1. Name of station: Plant Drain 2. Location (if not at STP): N/A 3. Following equipment operable: a. All pumps? b. Ventilation? c. Control system? d. Sump pump? li Yes [] No* [] N/A e. Seal water system? li Yes [] No* [] N/A 4. Reliability considerations: a. Class		UNIT PROCESS: Sewage Pumping									
3. Following equipment operable: a. All pumps? b. Ventilation? c. Control system? d. Sump pump? e. Seal water system? li Yes li No* X N/A 4. Reliability considerations: a. Class I I X I I I I I b. Alarm system operable? c. Alarm conditions monitored: 1. high water level: 2. high liquid level in dry well: 3. main electric power: 4. auxiliary electric power: 4. auxiliary electric power: 6. test function: 7. other: 6. test function: 7. other: 6. Alarm system operability provisions: 1. Generator hook up? 2. Two sources of electricity? 3. Portable pump? 4. 1 day storage? 5. Does station have bypass? a. Evidence of bypass use? b. Can bypass be measured? At least dally	1.	Name of station:	Plant Drain								
a. All pumps? b. Ventilation? c. Control system? d. Sump pump? e. Seal water system? 4. Reliability considerations: a. Class b. Alarm system operable? c. Alarm conditions monitored: 1. high water level: 2. high liquid level in dry well: 3. main electric power: 4. auxiliary electric power: 6. test function: 7. other: 6. test function: 7. other: 6. Alarm system operational? e. Alarm signal reported to (identify): f. Continuous operability provisions: 1. Generator hook up? 2. Two sources of electricity? 3. Portable pump? 4. 1 day storage? 5. Does station have bypass? a. Evidence of bypass use? b. Can bypass be measured? At least daily	2.	Location (if not at STP):	<u>N/A</u>								
b. Ventilation? c. Control system? d. Sump pump? e. Seal water system? li Yes [] No* [x] N/A d. Sump pump? li Yes [] No* [x] N/A d. Sump pump? li Yes [] No* [x] N/A d. Sump pump? li Yes [] No* [x] N/A li Yes [] No* [x] N/A 4. Reliability considerations: a. Class b. Alarm system operable? c. Alarm conditions monitored: l. high water level: [x] Yes [] No* [] N/A li Yes [] No* [x] N/A li Yes [] No li Yes [x] No li	3.	Following equipment operable									
c. Control system? d. Sump pump? e. Seal water system? li Yes [i] No* [x] N/A 4. Reliability considerations: a. Class b. Alarm system operable? c. Alarm conditions monitored: li high water level: li high liquid level in dry well: li Yes [i] No* [x] N/A 4. auxiliary electric power: li Yes [i] No* [x] N/A 4. auxiliary electric power: li Yes [i] No* [x] N/A 5. failure of pump motors to start: li Yes [i] No* [x] N/A 6. test function: li Yes [i] No* [x] N/A 6. test function: li Yes [i] No* [x] N/A 6. test function: li Yes [i] No* [x] N/A 6. test function: li Yes [i] No* [x] N/A 6. test function: li Yes [i] No* [x] N/A 6. test function: li Yes [i] No* [x] N/A 6. test function: li Yes [i] No* [x] N/A 6. Test function: li Yes [i] No* [x] N/A 6. Test function: li Yes [i] No* [x] N/A 6. Test function: li Yes [i] No* [x] N/A 6. Test function: li Yes [i] No On Site Generator li Yes [i] Yes [x] No li N/A li N/A li Yes [x] No li N/A		a. All pumps?	[x] Yes	[] No*							
d. Sump pump? e. Seal water system? [] Yes [] No* [X] N/A 4. Reliability considerations: a. Class b. Alarm system operable? c. Alarm conditions monitored: 1. high water level: 2. high liquid level in dry well: 3. main electric power: 4. auxiliary electric power: 5. failure of pump motors to start: 6. test function: 7. other: 4. Backup for alarm system operational? 6. Alarm signal reported to (identify): 7. Continuous operability provisions: 1. Generator hook up? 2. Two sources of electricity? 3. Portable pump? 4. 1 day storage? 5. other: Does station have bypass? a. Evidence of bypass use? b. Can bypass be disinfected? c. Can bypass be measured? At least daily 4. How often is station checked? At least daily 4. How often is station checked? At least daily		b. Ventilation?	[] Yes	[] No*	[x] N/A						
e. Seal water system? [] Yes [] No* [x] N/A 4. Reliability considerations: a. Class b. Alarm system operable? c. Alarm conditions monitored: 1. high water level: 2. high liquid level in dry well: 3. main electric power: 5. failure of pump motors to start: 6. test function: 7. other: 6. Alarm system operational? 6. Alarm signal reported to (identify): 7. other: 1. Generator hook up? 2. Two sources of electricity? 3. Portable pump? 4. 1 day storage? 5. other: 6. Does station have bypass? 6. How often is station checked? At least dally At least dally At least dally At least dally		•	[x] Yes	[] No*	[] N/A						
4. Reliability considerations: a. Class b. Alarm system operable? c. Alarm conditions monitored: 1. high water levet 2. high liquid level in dry well: 3. main electric power: 4. auxiliary electric power: 5. failure of pump motors to start: 6. test function: 7. other: 8. Alarm signal reported to (identify): 9. Alarm signal reported to (identify): 1. Generator hook up? 2. Two sources of electricity? 3. Portable pump? 4. 1 day storage? 5. Does station have bypass? a. Evidence of bypass use? b. Can bypass be measured? 6. How often is station checked? At least daily [] I [] I [] III [] III [] III [] III [] III [] III [] IVA []		* * *	= =		[x] N/A						
a. Class b. Alarm system operable? c. Alarm conditions monitored: 1. high water level: 2. high liquid level in dry well: 3. main electric power: 4. auxiliary electric power: 6. test function: 7. other: 6. test function: 7. other: 1. Generator hook up? 2. Two sources of electricity? 3. Portable pump? 4. 1 day storage? 5. Does station have bypass? 6. Evidence of bypass use? 6. Can bypass be measured? [] I [] I [] III []		e. Seal water system?	[] Yes	[] No*	[x] N/A						
b. Alarm system operable? c. Alarm conditions monitored: 1. high water level: 2. high liquid level in dry well: 3. main electric power: 4. auxiliary electric power: 5. failure of pump motors to start: 6. test function: 7. other: Alarm signal reported to (identify): 6. Continuous operability provisions: 1. Generator hook up? 2. Two sources of electricity? 3. Portable pump? 4. 1 day storage? 5. Does station have bypass? a. Evidence of bypass use? b. Alarm signal record? Can bypass be measured? Eximate the station checked? [Interpretable to (interpretable to (inter	4.	Reliability considerations:			,						
c. Alarm conditions monitored: 1. high water level: [X] Yes [] No* [] N/A 2. high liquid level in dry well: [] Yes [] No* [X] N/A 3. main electric power: [] Yes [] No* [X] N/A 4. auxiliary electric power: [] Yes [] No* [X] N/A 5. failure of pump motors to start: [] Yes [] No* [X] N/A 6. test function: [X] Yes [] No* [X] N/A d. Backup for alarm system operational? [X] Yes [] No* [] N/A e. Alarm signal reported to (identify): local audible & visual, with autodialer f. Continuous operability provisions: 1. Generator hook up? [X] Yes [] No On Site Generator 2. Two sources of electricity? [] Yes [] No 3. Portable pump? [] Yes [X] No 4. 1 day storage? [] Yes [X] No 5. other: County Owned VacTruck 5. Does station have bypass? [] Yes* [] No [X] N/A b. Can bypass be disinfected? [] Yes [] No* [X] N/A c. Can bypass be measured? [] Yes [] No* [X] N/A 6. How often is station checked? At least daily		a. Class	[] [[x] II	[] III						
1. high water level: 2. high liquid level in dry well: 3. main electric power: 4. auxiliary electric power: 5. failure of pump motors to start: 6. test function: 7. other: 6. Alarm signal reported to (identify): 6. Continuous operability provisions: 1. Generator hook up? 2. Two sources of electricity? 3. Portable pump? 4. 1 day storage? 5. Does station have bypass? 6. Can bypass be measured? 6. How often is station checked? 1. In high water level: 1. In hig		b. Alarm system operable	? [x] Yes	[] No	[] N/A						
2. high liquid level in dry well: 3. main electric power: 4. auxiliary electric power: 5. failure of pump motors to start: 6. test function: 7. other: 8. Alarm signal reported to (identify): 9. Continuous operability provisions: 1. Generator hook up? 2. Two sources of electricity? 3. Portable pump? 4. 1 day storage? 5. Does station have bypass? a. Evidence of bypass use? by the desired of the distriction of the station checked? 2. How often is station checked? 2. How often is station checked? 3. Portable pump? 4. 1 No 6. How often is station checked? 4. At least daily		c. Alarm conditions monitor	ored:								
3. main electric power: 4. auxiliary electric power: 5. failure of pump motors to start: 6. test function: 7. other: 6. Alarm signal reported to (identify): 6. Continuous operability provisions: 7. Two sources of electricity? 8. Portable pump? 9. Two sources of electricity? 1. Tyes [] No On Site Generator 1. Tyes [] Yes []		 high water level: 	[x] Yes	[] No*	[] N/A						
4. auxiliary electric power: 5. failure of pump motors to start: 6. test function: 7. other: N/A 6. Backup for alarm system operational? 8. Alarm signal reported to (identify): 9. Continuous operability provisions: 1. Generator hook up? 2. Two sources of electricity? 3. Portable pump? 4. 1 day storage? 5. other: Does station have bypass? a. Evidence of bypass use? b. Can bypass be disinfected? Can bypass be measured? I] Yes I] No [X] N/A		high liquid level in d	ry well: [] Yes	[] No*	[x] N/A						
5. failure of pump motors to start: 6. test function: 7. other: N/A d. Backup for alarm system operational? e. Alarm signal reported to (identify): f. Continuous operability provisions: 1. Generator hook up? 2. Two sources of electricity? 3. Portable pump? 4. 1 day storage? 5. other: Does station have bypass? a. Evidence of bypass use? b. Can bypass be measured? [] Yes [] No [] Yes [] Y		main electric power	: [] Yes	[] No*	[x] N/A						
6. test function: 7. other: N/A d. Backup for alarm system operational? e. Alarm signal reported to (identify): f. Continuous operability provisions: 1. Generator hook up? 2. Two sources of electricity? 3. Portable pump? 4. 1 day storage? 5. other: Does station have bypass? a. Evidence of bypass use? b. Can bypass be measured? 6. How often is station checked? [X] Yes [] No* [] No* [] No On Site Generator [] Yes [] No [] Yes [] No* [] Yes [] Yes [] No* [] Yes [] Yes [] No* [] Yes		 auxiliary electric por 	wer: [] Yes		[x] N/A						
7. other: d. Backup for alarm system operational? e. Alarm signal reported to (identify): f. Continuous operability provisions: 1. Generator hook up? 2. Two sources of electricity? 3. Portable pump? 4. 1 day storage? 5. other: Does station have bypass? a. Evidence of bypass use? b. Can bypass be measured? 7. other: N/A X Yes No N/A I No On Site Generator Yes X No		• •	ors to start: [] Yes	[] No*	[x] N/A						
d. Backup for alarm system operational? e. Alarm signal reported to (identify): f. Continuous operability provisions: 1. Generator hook up? 2. Two sources of electricity? 3. Portable pump? 4. 1 day storage? 5. other: 5. Does station have bypass? a. Evidence of bypass use? b. Can bypass be disinfected? c. Can bypass be measured? 6. How often is station checked? [X] Yes [] No* [] N/A I N/A I N/			~ ~	[] No*							
e. Alarm signal reported to (identify): f. Continuous operability provisions: 1. Generator hook up? 2. Two sources of electricity? 3. Portable pump? 4. 1 day storage? 5. Obes station have bypass? a. Evidence of bypass use? b. Can bypass be disinfected? 6. How often is station checked? Indeptition of the continuous operability provisions: Indeptition of the continuous operability provisions: Indeptition of the continuous operability provisions: Indeptition of the continuous operability provisions: Indeptition of the continuous operability provisions: Indeptition of the continuous operability provisions: Indeptition of the continuous operability provisions: Indeptition of the continuous operability provisions: Indeptition of the continuous operability provisions: Indeptition of the continuous operability of the continuous operations: Indeptition of the continuous operation of the continuous operations: Indeptition of the continuous operation of the continuous operations: Indeptition of the continuous operation operation operations: Indeptition of the continuous operation ope											
f. Continuous operability provisions: 1. Generator hook up? 2. Two sources of electricity? 3. Portable pump? 4. 1 day storage? 5. other: Does station have bypass? a. Evidence of bypass use? b. Can bypass be disinfected? c. Can bypass be measured? Example 1 No Site Generator [] Yes [] No [] Yes [] No* [] Yes [] N		· · · · · · · · · · · · · · · · · · ·			- -						
1. Generator hook up? 2. Two sources of electricity? 3. Portable pump? 4. 1 day storage? 5. Obes station have bypass? a. Evidence of bypass use? b. Can bypass be measured? [] Yes [] No [] Yes [] No [] Yes [] No [] Yes* [] No [] Yes* [] No [] Yes* [] No [] Yes []		- ·	· · · · · · · · · · · · · · · · · · ·	<u>local audible & visual, with autodialer</u>							
2. Two sources of electricity? 3. Portable pump? 4. 1 day storage? 5. other: County Owned VacTruck [] Yes [x] No County Owned VacTruck [] Yes* [x] No [] Yes [x] No [] Yes [x] No [] Yes* [x] No		•									
3. Portable pump? 4. 1 day storage? 5. other: County Owned VacTruck 5. Does station have bypass? a. Evidence of bypass use? b. Can bypass be disinfected? c. Can bypass be measured? 6. How often is station checked? [] Yes [] No [] Yes [] No* [x] N/A [] Yes [] No* [x] N/A At least daily		·	• •		On Site Generator						
4. 1 day storage? 5. other: County Owned VacTruck 5. Does station have bypass? a. Evidence of bypass use? b. Can bypass be disinfected? c. Can bypass be measured? [] Yes [x] No County Owned VacTruck [] Yes* [x] No [] Yes* [x] No			• • •								
5. other: County Owned VacTruck 5. Does station have bypass? a. Evidence of bypass use? b. Can bypass be disinfected? c. Can bypass be measured? [] Yes* [] No [x] N/A [] Yes [] No* [x] N/A [] Yes [] No* [x] N/A [] Yes [] No* [x] N/A At least daily		• •									
5. Does station have bypass? a. Evidence of bypass use? b. Can bypass be disinfected? c. Can bypass be measured? [] Yes* [] No [] Yes* [] No [] Yes [] No* [] Yes [] Yes [] No* [] Yes [] No* [] Yes [] Yes [] Yes [] No* [] Yes [] Yes [• •									
a. Evidence of bypass use? b. Can bypass be disinfected? c. Can bypass be measured? [] Yes* [] No* [x] N/A [] Yes [] No* [x] N/A		5. other:	<u>County</u>	Owned Vac1	<u>ruck</u>						
b. Can bypass be disinfected? c. Can bypass be measured? [] Yes [] No* [x] N/A [] Yes [] No* [x] N/A [] Yes [] No* [x] N/A [] At least daily	5.	Does station have bypass?	[] Yes*	[x] No							
c. Can bypass be measured? [] Yes [] No* [x] N/A 6. How often is station checked? At least daily					= =						
6. How often is station checked? At least daily			• •	-							
		c. Can bypass be measured?	[] Yes	[] No*	[x] N/A						
7. General condition: [x] Good [] Fair [] Poor*	6.	How often is station checked?	At least	At least daily							
	7.	General condition:	[x] Good	[]Fair	[] Poor*						

Comments: This pump station is equipped with one submersible pump. Process units in the plant, such as the Rotamat, grit channel, equalization basins, clarifiers, UV channel and drying beds, are equipped with drains, to allow for cleaning and maintenance. Each of the units drains to the Plant Drain wet well.

	UNIT PROCESS: Screening/Comminution							
1.	Number of units:	Manual:_		1 (bypass)	Mechanical: 1 Rotamat			
	Number of units in operation:		Manual: <i>0</i>		Mechanical: <u>1</u>			
^								
2.	Bypass channel provided?		[x] Yes					
	Bypass channel in use?		[] Yes	[x] No	[] N/A			
3.	Area adequately ventilated?		[x] Yes	[] No*				
4.	Alarm system for equipment failure or overloa	ıds?	[x] Yes	[] No	[] N/A			
	If present, is the alarm system operational?		[x] Yes		[]N/A			
	in processing to the diaminory of the operational.		[7] 100	[]//0	[]			
5 .	Proper flow-distribution between units?		[]Yes	[] No *	[x] N/A			
6.	How often are units checked and cleaned?		once d	<u>aily</u>				
7.	Cycle of operation:		flow ac	tivated by an	ultrasonic flow monitor			
8.	Volume of screenings removed:			~1 - 5 gallons every 4 months				
9.	General condition:	,	[x] Goo	d []Fair	[] Poor*			
Co	mments: The Rotamat at the Pamunkey Jail	P.S. great	tly reduc	es the amour	nt of solids received at the plant.			
	UNIT	PROCES	S: Grit R	<u>lemoval</u>				
1.	Number of units:	1						
	Number of units in operation:	<u></u>						
2.	Unit adequately ventilated?	[x] Yes	[]	No *				
3.	Operation of grit collection equipment:	[x] Manu	ual []	Time clock	[] Continuous duty			
4.	Proper flow-distribution between units?	[]Yes	[]	No *	[x] N/A			
5.	Daily volume of grit removed:	Not mea	asured –	very minimal	!			
6.	All equipment operable?	[x] Yes	[]	No *				
7.	General condition:	[x] Good	j []	Fair	[]Poor*			
	Comments: This is an aerated grit channel. The air lift grit removal system is run daily. The removed grit is allowed to air dry, and then is disposed of with the screenings from the Rotamat.							

	UNIT PROCESS: Flow Equalization				
1.	Type of unit:	[x] In-line	[] Side-line	[] Spill Pond	
	Number of cells:	2	÷		
	Number of cells in operation:	_2			
2.	What unit process does it precede?	Aeration Ba	<u>sins</u>		
3.	Is volume adequate?	[x] Yes	[] No		
4.	Type of mixing:	[] None	[x] Diffused	air [] Fixed Mechanical	
		[] Floating m	echanical		
5.	Condition of mixing equipment:	[x] Good	[] Average	[]Poor*	
6.	How drawn off?	•			
	a. Pumped from:	[] Surface	[x] Sub-surfa	ace [] Adjustable [] N/A	
	b. Weir:	[] Surface	[] Sub-surfa	ce [x] N/A	
7.	What is the condition of the containment structure?	[x] Good	[] Fair	[]Poor*	
8.	Are the facilities to flush solids and grease from basin walls	adequate?	[]Yes	[] No* [x] N/A	
9.	Are there facilities for withdrawing floating material and foar	π?	[]Yes	[x] No	
10.	How are solids removed?	[x] Drain dow	'n	[] Drag line	
	·	[x] Other: <u>Co</u>	unty VacTru	ck is also available	
	Is it adequate?	[x] Yes	[] No*		
11.	Is the emergency overflow in good condition?	[]Yes	[] No*	[x] N/A	
12.	Are the depth gauges in good condition?	[]Yes	[] No	[x] N/A	
13.	General condition:	[x] Good	[] Fair	[] Poor*	
equ	Comments: Wastewater flows from the grit chamber to a splitter box that distributes flow to the two flow equalization basins. Wastewater is pumped from each basin to the flow control box, where it gravity flows to the splitter box prior to the aeration basins. Excess flow in the flow control box is returned to the EQ Basins.				

The EQ Basins may be bypassed; flows can be diverted from the grit channel directly to the aeration basins.

	UNIT PROCESS: Sewage Pumping					
1.	Name of station:	EQ Basin Pump Station				
2.	Location (if not at STP):	N/A				
3.	Following equipment operable	e:				
	a. All pumps?	[x] Yes	[] No*			
	b. Ventilation?	[x] Yes	[] No* [] N/A			
	c. Control system?	[x] Yes	[] No* [] N/A			
	d. Sump pump?	[x] Yes	[] No* [] N/A			
	e. Seal water system?	[] Yes	[] No* [x] N/A			
4.	Reliability considerations:					
	a. Class	[] [[x] []			
	b. Alarm system operable					
	c. Alarm conditions monit					
	 high water level: 	[x] Yes	[] No* [] N/A			
	2. high liquid level in	dry well: [] Yes	[] No* [x] N/A			
	main electric powe	er: [] Yes	[] No* [x] N/A			
	4. auxiliary electric po	ower: [] Yes	[] No* [x] N/A			
	failure of pump mo	otors to start: [] Yes	[] No* [x] N/A			
	test function:	[x] Yes	[] No*			
	7. other:	<u>N/A</u>				
	 d. Backup for alarm syste 	em operational? [x] Yes	[] No* [] N/A			
	e. Alarm signal reported t	o (identify): <u>local au</u>	udible & visual, with autodialer			
	f. Continuous operability					
	 Generator hook up 	? [x] Yes	[] No On Site Generator			
	Two sources of ele	ectricity? [] Yes	[x] No			
	Portable pump?	[] Yes	[x] No			
	4. 1 day storage?	[] Yes	[x] No			
	5. other:	<u>N/A</u>				
5 .	Does station have bypass?	[] Yes*	' [x] No			
	a. Evidence of bypass use?	[] Yes*	[] No [x] N/A			
	b. Can bypass be disinfected	? [] Yes	[] No* [x] N/A			
	c. Can bypass be measured?	[] Yes	[] No* [x] N/A			
6.	How often is station checked?	Once d	aily			
7.	General condition:	[x] Good	d []Fair []Poor*			
gra	Comments: Two submersible pumps pump wastewater from the EQ basins to the flow control box, where it gravity flows to the splitter box prior to the aeration basins. Excess flow in the flow control box is returned to the EQ Basins. The pumps automatically alternate lead and lag mode. If flow is continuous, the lead pump is					

Page 9 of 18

alternated daily.

	UNIT PROCESS: Activated Sludge Aeration						
1.	Number of units: Number of units in operation:	-	2 ("new plant" and "old plant") 1 ("new plant")				
2.	Mode of operation:	<u>.</u> .	Extend	ed Aeratio	<u>on</u>		
3.	Proper flow distribution between un	its? [] Yes	[] No	[x] N/A		
4.	Foam control operational?	į	x] Yes	[] No	[] N/A		
5.	Scum control operational?	1] Yes	[] No¹	[x] N/A		
 7. 	Evidence of the following problems: a. Dead spots? b. Excessive foam? c. Poor aeration? d. Excessive aeration? e. Excessive scum? f. Aeration equipment malfunction: g. Other: Mixed liquor characteristics for 12/20 pH: 6.9 SU DO: 0.3 mg/L	[[[[?] Yes*] Yes*] Yes*] Yes*] Yes*	[x] No [x] No [x] No [x] No	,	000 mg/l)	
	SVI: Odor: <u>earthy</u>	Color: Settleabi Other:	lity:	<u>Medium</u> 480 mi/i	<u>Brown</u> in 30 minutes		
8. a. b. c.	Return/waste sludge: return rate: waste rate: frequency of wasting:	Not measured			r lift with aerati s at a time, bas		
9.	Aeration system control:	[] Time Clock	[]	Manual	[x] Continuo	us	
10.	Effluent control devices working pro	perly <i>(oxidatio</i>)	n ditche	es)? []	Yes [] No	[x] N/A	
11.	General condition:	[x] Good	[]	Fair	[]Poor*		
Comments: One of two aeration basin – clarifier trains ("new plant") was in use at the time of inspection. Preceding the completion of collection system rehabilitation work in February 2006, both the "old plant" and "new plant" aeration basin – clarifier trains were required, due to I&I flow.							
	of four blowers are run at one tin	ne to provide a	eration	to the grit	channel, EQ b	asins, aeratio	n basins,

UNIT PROCESS: Sedimentation [x] Secondary [] Primary [] Tertiary 1. Number of units: 2 ("new plant" and "old plant") In operation: 1 ("new plant") 2. Proper flow-distribution between units? [] Yes [] No* [x] N/A Signs of short-circuiting and/or overloads? [] Yes* [x] No 4. Effluent weirs level? [x] Yes [] No* [] N/A Clean? [x] Yes [] No* 5. Scum collection system working properly? [x] Yes [] No* [] N/A Sludge-collection system working properly? [x] Yes [] No* [] N/A 7. Influent, effluent baffle systems working properly? [x] Yes [] No* [] N/A 8. Chemical addition? [] Yes [x] No

Comments: One of two aeration basin – clarifier trains ("new plant") was in use at the time of inspection. Preceding the completion of collection system rehabilitation work in February 2006, both the "old plant" and "new plant" aeration basin – clarifier trains were required, due to I&I flow.

None utilized

[x] Good [] Fair

Clear at time of inspection

[] Poor*

Chemicals:

9. Effluent characteristics:

10. General condition:

	UNIT PROCESS: Aerobic Digestion					
1.	Number of units:	2				
	Number of units in operation:	2				
2.	Type of sludge treated:	[] Prir	m ary	[x] WAS	[] Other:	
3.	Frequency of sludge application to digesters:	<u>1/da</u>	4			
4.	Supernatant return rate:	<u>Not 1</u>	measured			
5.	pH adjustment provided?	[]Yes	s [x] No			
	Utilized:	[]Yes	[] No	[x] N/A		
6.	Tank contents well-mixed and relatively free	of odors?	[x] Yes	[] No*		
7.	If diffused aeration is used, do diffusers requ	ire frequent	cleaning?	[]Yes	[x] No	[] N/A
8.	Location of supernatant return:	[x] Head	[] Primary	[] Other		
•	Droope central tections Net concertained					
9.	Process control testing: Not ascertained a. percent volatile solids:	[]Yes _	%	[x]No		
	b. pH:	[]Yes _	/° SU	[x] No		
	c. alkalinity:	_	mg/L			
	d. dissolved oxygen:	[]Yes _	mg/L	[x] No	•	
10.	Foaming problem present?	[] Yes *	[x] No			
11.	Signs of short-circuiting or overloads?	[] Yes *	[x] No			
12.	General condition:	[x] Good	[] Fair []	Poor*		
Thic	Comments: The sludge is allowed to settle and is then decanted to the headof the plant via a submersible pump. Thickened Equid sludge is periodically removed by a septic hauler and transported to Hanover County's Richfood Road Septage Receiving Station for disposal.					
Two	Two of four blowers are run at one time to provide aeration to the grit channel, EQ basins, aeration basins, digester					

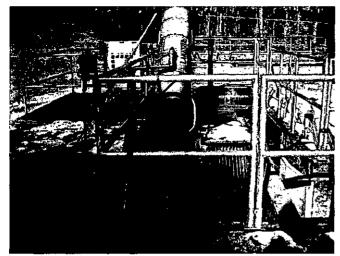
and post aeration basin.

	UNIT PROCESS: Drying Beds					
1.	Number of units:	4				
	Number of units in operation:	<u>o</u>				
	Number of beds with sludge:	<u> </u>				
2.	Cover in good condition?	[x] Yes [] No [] N/A				
3.	Typical sand depth in beds:	<u>~ 12 – 18</u> inches				
4.	Typical drying time:	<u>N/A</u>				
5.	Frequency of usage:	Last used in 1995				
6.	Underflow recycle location:	Head of the plant via plant drain				
7 .	Sludge distributed evenly across bed(s)?	[] Yes [] No* [x] N/A				
8.	Following problems noted:					
	a. Odors?	[] Yes* [x] No				
	b. Flies?	[] Yes* [x] No				
	c. Weed growth?	[] Yes* [x] No				
	d. Leakage from bed(s)?	[] Yes* [x] No				
9.		e plan, what is the current method of sludge disposal? <u>Approved plan</u> uid sludge to septage receiving station for disposal.				
10.	General condition:	[x] Good [] Fair [] Poor*				
Comments: None						

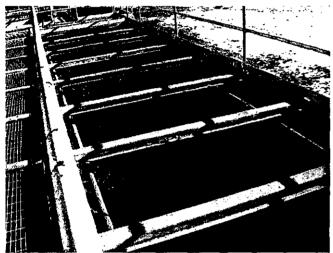
	UNIT PROCESS: Ultraviolet (UV) Disinfection					
1.	Number of UV lamps/assemblies: Number in operation:	2 Banks, each with Four 2-Bulb Modules 2 Banks, all Bulbs				
2.	Type of UV system and design dosage:	Low Pre	ssure, L	ow intensity, >85,000µws/cm²		
3.	Proper flow distribution between units?	[]Yes	[] No*	[x] N/A		
4.	Method of UV intensity monitoring?	E. coli m	onitorin	a		
5 .	Adequate ventilation of ballast control boxes?	[x] Yes	[] No*	[] N/A		
6.	Indication of on/off status of all lamps provided?	[x] Yes	[] No*			
7 .	Lamps assemblies easily removed for maintenance?	[x] Yes	[] No*			
8.	Records of lamp operating hours & replacement dates provided:	[x] Yes	[] No*			
9.	Routine cleaning system provide Operated properly? Frequency of routine cleaning:	[x] Yes [x] Yes <i>One of t</i> y	[] No* [] No* <u>vo bank</u> :	s cleaned each week		
10.	Lamp energy control system operating properly?	[x] Yes	[] No*			
11.	Date of last system overhaul: a. UV unit completely drained b. all surfaces cleaned c. UV transmissibility checked d. output of selected lamps checked e. output of tested lamps f. total operating hours, oldest lamp/assembly g. number of spare lamps and ballasts available:	[] Yes [x] Yes [x] Yes [x] Yes <u>N/A</u> 		[x] N/A – effluent channel 1 - <u>5264</u> hrs. Bank 2 ballasts: <u>5*</u>		
12.	UV protective eyeglasses provided:	[x] Yes	[] No*			
13.	General condition:	[x] Good	[]Fair	[]Poor*		
Cor	nments: This unit consists of (two) 2-module hanks of lights i	n series in 1	the plant	t's effluent channel. One		

bank of lights (2 modules) is removed and cleaned weekly. *Doswell and Ashland WWTPs use the same UV systems so that spare parts in storage at these WWTPs are available if needed.

Facility No. VA0062154


UNIT PROCESS: Flow Measurement

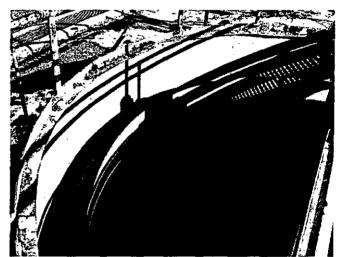
	[] Influent] Intermedia	te [x]	<u>Effluent</u>
1.	Type measuring device:	<u>90° v-not</u>	ch weirwiti	h stilling well, ultrasonic sensor and TIRE
2.	Present reading:	<u>Instantan</u>	eous: 1.2 g	pm @ 1045 hrs. (plant in "waste" mode)
3.	Bypass channel?	[]Yes	[x] No	
	Metered?	[]Yes	[] No*	[x] N/A
4.	Return flows discharged upstream from meter?	[·] Yes	[x] No	
	If Yes, identify:	<u>N/A</u>		
5.	Device operating properly?	[x] Yes	[] No*	
6.	Date of last calibration:	<u>Decembe</u>	er 14, 2010	
7.	Evidence of following problems:			
	a. Obstructions?	[]Yes*	[x] No	
	b. Grease?	[]Yes*	[x] No	
8.	General condition:	[x] Good	[] Fair	[] Poor*
Co	mments: None			


	<u>UNIT P</u>	ROCESS: P	ost Aeratio	<u>on</u>
1.	Number of units:	_1		
	Number of units in operation:	_1		
		•		
2.	Proper flow-distribution between units?	[]Yes	[] No*	[x] N/A
3.	Evidence of following problems:			
a.	Dead spots?	[]Yes*	[x] No	
b.	Excessive foam?	[] Yes*	[x] No	
C.	Poor aeration?	[]Yes*	[x] No	
d.	Mechanical equipment failure?	[] Yes*	[x] No	[] N/A
4.	How is the aerator controlled?	[] Time clo	ck [] N	fanual [x] Continuous
		[] Other		[] N/A
5.	What is the current operating schedule?	Continuo	<u>us</u>	
6.	Step weirs level?	[x] Yes	[] No*	[] N/A
_				
7.	Effluent D.O. level:	Not obtain	<u>ed</u>	
	Consel conditions	6.4.0	f1 = :-	/1D+
8.	General condition:	[x] Good	[] Fair	
	nments: Two of four blowers are run at one ti ins, digester and post aeration basin.	ime to provi	de aeration	to the grit channel, EQ basins, aeration
	,			

	Type outfall:	Ivi Chasa ha	
2.		[x] Shore bas	sed [] Submerged
	Type if shore based:	[] Wingwall	[x] Headwall [] Rip Rap [] N/A
3.	Flapper valve?	[]Yes	[x] No
4.	Erosion of bank?	[]Yes*	[] No [] N/A
5.	Effluent plume visible?	[] Yes *	[]No
Com	ments: The outfall on the access.	Pamunkey R	iver was not viewed due to the remote location and snow covered
6.	Condition of outfall and supp	orting structu	res: []Good []Fair []Poor*
7.	Final effluent, evidence of fo	llowing proble	ms:
	a. Oil sheen?	[] Yes*	[x] No*
	b. Grease?	[] Yes*	[x] No*
	c. Sludge bar?	[] Yes*	[] No
	d. Turbid effluent?	[] Yes*	[x] No*
	e. Visible foam?	[] Yes*	[x] No*
	f. Unusual odor?	[] Yes*	[x] No*

INSPECTION PHOTOS

Rotamat screenings removal system and bypass channel


Aeration basin

UV disinfection system

Flow equalization basins

Clarifier

Post aeration basin

DEPARTMENT OF ENVIRONMENTAL QUALITY - WATER DIVISION LABORATORY INSPECTION REPORT

FACIL	ITY NO:	INSPECTION DATE:	PREVIOUS INSP. I	DATE:	PREVIOUS EVA	LUATIO	- 1	TIME SPENT:
VAOC	62154	December 21, 2010	June 28, 2006	3	No Deficier	ncies	'	6 hours w/ travel & report
NAME	ADDRES	S OF FACILITY:	FACILITY CLASS:		CILITY TYPE:			ANNOUNCED
P.O. B	ox 470	use WWTP	() MAJOR	(X)			(X) (X)	ISPECTION? YES NO
Hanov	er, VA 23	069	(X) MINOR	()	INDUSTRIAL		FY	-SCHEDULED
		ast side of Route 301 Courthouse Complex	() SMALL	()	FEDERAL		IN	ISPECTION? YES
. ·			() VPA/NDC	()	COMMERCIAL	LAB	()	NO
INSPE	CTOR(S):		REVIEWERS:		PRESENT AT IN:	SPECTION	ON:	
Mike D	are Mi	are 12-28-10	01/2 12/19/10 Kus	12/18/10	Barbara Mitchell			
			RY EVALUATION				DEFIC	IENCIES?
					1	· // Y(es	No
LABO	RATORY	RECORDS						X
		PLING & ANALYSIS						X
		EQUIPMENT			· · · · · ·		 -	X
pH AN	ALYSIS P	ROCEDURES						X
		YGEN ANALYSIS PROCE	EDURES					X
		<u> </u>						
								<u> </u>
1						<u>-</u> .		
		·					4	†
		 						
								
								
		QUA	LITY ASSURANCE/Q	UALITY	CONTROL			
Y/N	QUALIT	Y ASSURANCE METHOD	PARAMETER	રક		FRE	QUEN	CY
	REPLIC	ATE SAMPLES				1		
	SPIKED	SAMPLES						
	STAND	ARD SAMPLES						
	SPLITS	SAMPLES						
	SAMPL	E BLANKS						
	OTHER							
	EPA-DN	IR QA DATA?	RATING: () No Def	iciency () Defici	ency	(X) NA	
	QC SAN	IPLES PROVIDED?	RATING: () No Def	iciency () Defici	ency	(X) NA	
COPIES	TO: (X) DE	Q-PRO; () OWCP; (X) OWNER	R; ()EPA-Region III; ()Ot	her:				

FACILITY #: VA0062154

					1 175	OILI I N	·. VAOOC	2107		
LABO	RATORY RECORDS SECTION									
LABO	RATORY RECORDS INCLUDE TH	E FOLL	OWING:				_			
X SAMPLING DATE X ANALYSIS DATE X CONT MONITORING CHART										
Х	SAMPLING TIME	X	ANALYSIS TIME	Х	INSTRUME	NT CAL	IBRATIO	NC		
Х	X SAMPLE LOCATION X TEST METHOD X INSTRUMENT MAINTENANCE									
		l <u></u>		Х	CERTIFICA	TE OF	ANALYS	IS		
WRIT	TEN INSTRUCTIONS INCLUDE TH	IE FOLI	LOWING:	*			·			
					•					
Х	SAMPLING SCHEDULES	x	CALCULATIONS	Х	ANALYSIS	PROCE	DURES			
						YES	NO	N/A		
DO AL	L ANALYSTS INITIAL THEIR WOR	RK?		<u> </u>	·	Х				
DO BE	NCH SHEETS INCLUDE ALL INFO	ORMAT	ON NECESSARY TO DETER	RMINE	RESULTS?	Х				
IS THE	ber 2010	X								
ARE A	LL MONITORING VALUES REQU	IRED BY	THE PERMIT REPORTED?			Х				
GENE	RAL SAMPLING AND ANALYSIS	SECTIO	ON		·					
N. 4					4:378	YES	NO	N/A		
ARES	AMPLE LOCATION(S) ACCORDIN	NG TO F	PERMIT REQUIREMENTS?			Х				
ARE S	AMPLE COLLECTION PROCEDU	RES AP	PROPRIATE?			Х				
IS SAM	IPLE EQUIPMENT CONDITION A	DEQUA	TE?			Х	<u> </u>			
IS FLC	W MEASUREMENT ACCORDING	TO PE	RMIT REQUIREMENTS?		,	Х				
AREC	OMPOSITE SAMPLES REPRESE	NTATIV	E OF FLOW?			X				
ARE S	AMPLE HOLDING TIMES AND PR	RESERV	ATION ADEQUATE?			Х		<u>-</u>		
ADEQ Doswe	ALYSIS IS PERFORMED AT ANOT UATE? LIST PARAMETERS AND BII WWTP Lab – BOD; Totopotom VA) - TKN	NAME 8	ADDRESS OF LAB:			Х				
LABO	RATORY EQUIPMENT SECTION									
			ear team that the			YES	NO	N/A		
IS LAB	ORATORY EQUIPMENT IN PROF	ER OP	ERATING RANGE?			Х				
ARE A	NNUAL THERMOMETER CALIBR	ATION(S) ADEQUATE?	·-		X				
IS THE	LABORATORY GRADE WATER	SUPPLY	ADEQUATE?					X		
AREA	NALYTICAL BALANCE(S) ADEQU	ATE?	•					x		

LABORATORY INSPECTION REPORT SUMMARY

, FACILITY NAME:	FACILITY NO:	INSPECTION DATE:
Hanover Courthouse STP	VA0062154	December 21, 2010
LABORATORY EVALUATION:	() Deficiencies	
	(X) No Deficiencies	
LABO	RATORY RECORDS	
No deficiencies were noted		
GENERAL S	AMPLING AND ANALYSIS	
No deficiencies were noted		
LABOR	RATORY EQUIPMENT	
No deficiencies were noted		
INDIVI	DUAL PARAMETERS	
pH ANALYSIS PROCEDURES:	<u> 19 de la Maria de La Carta d</u>	- Control - Cont
No deficiencies were noted		
DISSOLVED OXYGEN ANALYSIS PROCEDURE	ES:	
No deficiencies were noted		
•		
		•
		·

ANALYST:	Barbara Mitchell	VPDES NO	VA0062154

Meter:Orion 3 Star

Parameter: Hydrogen Ion (pH) 1/08

Method: Electrometric

METHOD OF ANALYSIS:

|--|

18th Edition of Standard Methods – 4500-H⁺ B

21st or Online Editions of Standard Methods – 4500-H+B (00)

	pH is a method-defined analyte so modifications are not allowed. [40 CFR Part 136.6]	Υ	N
1)	Is a certificate of operator competence or initial demonstration of capability available for each-analyst/operator performing this analysis? NOTE : Analyze 4 samples of known pH. May use external source of buffer (different lot/manufacturer than buffers used to calibrate meter). Recovery for each of the 4 samples must be +/- 0.1 SU of the known concentration of the sample. [SM 1020 B.1]	x	
2)	Is the electrode in good condition (no chloride precipitate, scratches, deterioration, etc.)? [2.b/c and 5.b]	x	
3)	Is electrode storage solution in accordance with manufacturer's instructions? [Mfr.]	x	
4)	Is meter calibrated on at least a daily basis using three buffers all of which are at the same temperature? [4.a] NOTE: Follow manufacturer's instructions.	x	
5)	After calibration, is a buffer analyzed as a check sample to verify that calibration is correct? Agreement should be within +/- 0.1 SU. [4.a]	x	
6)	Do the buffer solutions appear to be free of contamination or growths? [3.1]	x	
7)	Are buffer solutions within the listed shelf-life or have they been prepared within the last 4 weeks? [3.a]	x	
8)	Is the cap or sleeve covering the access hole on the reference electrode removed when measuring pH? [Mfr.]	x	
9)	For meters with ATC that also have temperature display, is the thermometer verified annually? [SM 2550 B.1]	х	
10)	Is temperature of buffer solutions and samples recorded when determining pH? [4.a]	x*	
11)	Is sample analyzed within 15 minutes of collections? [40 CFR Part 136]	х	
12)	Is the electrode rinsed and then blotted dry between reading solutions (Disregard if a portion of the next sample analyzed is used as the rinsing solution.)? [4.a]	x	
13)	Is the sample stirred gently at a constant speed during measurement? [4.b]	x	
14)	Does the meter hold a steady reading after reaching equilibrium? [4.b]	x	
15)	Is a duplicate sample analyzed after every 20 samples if citing 18 th or 19 th Edition or daily for 20 th or 21 st Edition? [Part 1020] NOTE: Not required for <i>in situ</i> samples.	N/A	. <u>.</u>
16)	Is the pH of duplicate samples within 0.1SU of the original sample? [Part 1020]	N/A	
17)	Is there a written procedure for which result will be reported on DMR (Sample or Duplicate) and is this procedure followed? [DEQ]	N/A	

COMMENTS:

*Ms. Mitchell reported that she would add a "sample temperature" column to the bench sheet and begin recording this value

		' 1	
ANALYST:	Barbara Mitchell	VPDES NO	VA0062154

Meter: YSI 50B

Parameter: Dissolved Oxygen
Method: Membrane Electrode
Facility Elevation ~100'
1/08

METHOD OF ANALYSIS:

|--|

18th Edition of Standard Methods -- 4500-O G

21st or Online Editions of Standard Methods – 4500-O G (01)

	DO is a method-defined analyte so modifications are not allowed. [40 CFR Part 136.6]	Y	N
1)	If samples are collected, is collection carried out with a minimum of turbulence and air bubble formation and is the sample bottle allowed to overflow several times its volume? [1.c]	In- situ	
2)	Are meter and electrode operable and providing consistent readings? [3]	x	
3)	Is membrane in good condition without trapped air bubbles? [3.b]	x	
4)	Is correct filling solution used in electrode? [Mfr.]	x	
5)	Are water droplets shaken off the membrane prior to calibration? [Mfr.]	x	
6)	Is meter calibrated before use or at least daily? [Mfr. & Part 1020]	x	
7)	Is calibration procedure performed according to manufacturer's instructions? [Mfr.]	x	
8)	Is sample stirred during analysis? [Mfr.]	ln- situ	
9)	Is the sample analysis procedure performed according to manufacturer's instructions? [Mfr.]	х	
10)	Is meter stabilized before reading D.O.? [Mfr.]	х	
11)	Is electrode stored according to manufacturer's instructions? [Mfr.]	х	
12)	Is a duplicate sample analyzed after every 20 samples if citing 18 th or 19 th Edition or daily if citing 20 th or 21 st Edition? [Part 1020] NOTE : Not required for <i>in situ</i> samples.	N/A	
13)	If a duplicate sample is analyzed, is the reported value for that sampling event the average concentration of the sample and the duplicate? [DEQ]	N/A	
14)	If a duplicate sample is analyzed, is the relative percent difference (RPD) ≤ 20? [18 th ed. Table 1020 I; 21 st ed. DEQ]	N/A	

PROBLEMS:

None

DEPARTMENT OF ENVIRONMENTAL QUALITY - WATER DIVISION SAMPLE ANALYSIS HOLDING TIME/CONTAINER/PRESERVATION CHECK SHEET

Revised 3/08 [40 CFR, Part 136.3, Table II]

FACILITY NAME:	Han	over C	ourth	ouse W	/WTP			VPD	ES NO	VA0062154	DA.	TE:	Dece	mber 2	1, 2010
	HOLDING TIMES	***				SAN	IPLE C	ONTA	INER	PR	RESER	(VATI	ON		
PARAMETER	APPROVED	ME	T?	LOG	GED?		ADEQ. APPROP. /OLUME TYPE		APPROVED		М	ET?	CHE	CKED?	
		Υ	N	Υ	N	Υ	N	Υ	N			Υ	N	Υ	N
BOD5 & CBOD5	48 HOURS	х		x		х		х		ANALYZE 2 HRS or	6°C	x		x	
TSS	7 DAYS	х		x		х		х		6°C		х		x	
FECAL COLIFORM / E. coli / Enterococci	6 HRS & 2 HRS TO PROCESS	X		x		x		х		10°C (1 HOUR)+ 0.00 Na₂S₂0₃	08%	x		х	
рН	15 MIN.	х		х		x		x		N/A					
CHLORINE	15 MIN.					_				N/A					
DISSOLVED 02	15 MIN./IN SITU	х		x		х		x		N/A	N/A				
TEMPERATURE	IMMERSION STAB.									N/A					
OIL & GREASE	28 DAYS									6°C + H₂SO₄/HCL pH<2					
AMMONIA	28 DAYS		;	į			ì		<u></u>	6°C + H₂S0₄ pH<2 DECHLOR					
TKN	28 DAYS	x		x		x		x	_	6°C + H₂S0₄ pH<2 DECHLOR		x		x	,
NITRATE	48 HOURS		<u> </u>							6°C					
NITRATE+NITRITE	28 DAYS									6°C + H₂S0₄ pH<	2				
NITRITE	48 HOURS					ļ 				6°C					
PHOSPHATE, ORTHO	48 HOURS									FILTER, 6°C					
TOTAL PHOS.	28 DAYS									6°C+ H₂S0₄ pH<2	2				
METALS (except Hg)	6 MONTHS									HNO ₃ pH<2					
MERCURY (CVAA)	28 DAYS									HNO ₃ pH<2					
PROBLEMS: None		<u> </u>		<u> </u>				<u> </u>		PROBLEMS: None	<u> </u>		<u> </u>	<u> </u>	<u> </u>

DEPARTMENT OF ENVIRONMENTAL QUALITY - WATER DIVISION EQUIPMENT TEMPERATURE LOG/THERMOMETER VERIFICATION CHECK SHEET

1/08

FACILITY NAME:	Hanover C	ourthous	se WWT	P	VPDES N	10:	VA0062	2154	DATE:	December 21, 2010			110
EQUIPMENT	RANGE	II RAN	V V	INSPECT		CK &	CORI	RECT	ANN	JAL THE	RMOME	TER VERIFICA	ATION
		KAI	NGE	READING °C	LOG	DAILY	INCRE		Is the NIST / N Thermometer v date or recertifi	vithin the	manufa		Yes ion
		;					<u> </u>		DATE CHECKED	MAR	KED	CORR FACTOR	INSPECT TEMP
		Υ	N		Υ	N	Y	N		Y	N	°C	°C
SAMPLE REFRIGER.	1-6°C			*			<u> </u>						
AUTO SAMPLER	1-6° C	x		4.0	x		x		9/15/10	x		0	
BOD INCUBATOR	20 <u>+</u> 1° C	<u> </u>			<u></u>	<u> </u> 	<u> </u>						
SOLIDS DRYING OVEN	103-105° C					i 		,					
WATER BATH	44.5 <u>+</u> .2° C					_							
INCUBATOR	35 <u>+</u> .5° C												
AUTOCLAVE	121° C IN 30 MIN				ا أ		3						
HOT AIR STERILIZING	170 <u>+</u> 10° C) 				
O & G WATER BATH	70 <u>+</u> 2° C												
REAGENT REFRIGER.	1-6° C												 [
pH METER	<u>+</u> 1° C				and a			*** (1	9/15/10	х		0	
DO METER	<u>+</u> 1° C) ;; .				9/15/10	х		0	
THERMOMETER- OUTFALL	± 1° C												
Hg WATER BATH	95 ° C												·

COMMENTS: *Once collected, samples are placed on ice for transport to the various labs.

Attachment G1
Water Quality Criteria Monitoring

ATTACHMENT A DEPARTMENT OF ENVIRONMENTAL QUALITY WATER QUALITY CRITERIA MONITORING

Effective January 1, 2012, all analyses shall be in accordance with 1VAC30-45, Certification for Noncommercial Environmental Laboratories, or 1VAC30-46, Accreditation for Commercial Environmental Laboratories.

A listing of Virginia Environmental Laboratory Accreditation Program (VELAP) certified and/or accredited laboratories can be found at the following website:

http://www.dgs.state.va.us/DivisionofConsolidatedLaboratoryServices/Services/EnvironmentalLaboratoryCer_tification/tabid/1059/Default.aspx

Please be advised that additional water quality analyses may be necessary and/or required for permitting purposes.

NOTE: results are in ug/l

CASRN	CHEMICAL	EPA ANALYSIS NO.	QUANTIFICATION LEVEL ⁽¹⁾	REPORTING RESULTS	SAMPLE TYPE ⁽²⁾	SAMPLE FREQUENCY
W		META	\LS			and the angle of the second
7440-36-0	Antimony, dissolved	(3)	260,000	<1.00	С	1/5 YR
7440-38-2	Arsenic, dissolved	(3)	9,300	<1.00	С	1/5 YR
7440-43-9	Cadmium, dissolved	(3)	30	<0.050	С	1/5 YR
16065-83-1	Chromium III, dissolved ⁽⁶⁾	(3)	1,900	<1.00	С	1/5 YR
18540-29-9	Chromium VI, dissolved (6)	(3)	600	<1.00	С	1/5 YR
7440-50-8	Copper, dissolved	(3)	180	2.90	С	1/5 YR
7439-92-1	Lead, dissolved	(3)	210	0.13	С	1/5 YR
7439-97-6	Mercury, dissolved	(3)	3.1	<0.10	С	1/5 YR
7440-02-0	Nickel, dissolved	(3)	500	0.69	С	1/5 YR
7782-49-2	Selenium, Total Recoverable	(3)	310	<0.50	С	1/5 YR
7440-22-4	Silver, dissolved	(3)	20	<0.10	С	1/5 YR
7440-28-0	Thallium, dissolved	(3)	(4)	<0.10	С	1/5 YR
7440-66-6	Zinc, dissolved	(3)	1,800	25.0	С	1/5 YR
		PESTICIDE	S/PCBs		(Carlotte de la companya de la comp	and the second section of the second section of the second section of the section
309-00-2	Aldrin	608/625	0.05	<0.050	С	1/5 YR
57-74-9	Chlordane	608/625	0.2	ND	С	1/5 YR
2921-88-2	Chlorpyrifos (synonym = Dursban)	622	(4)	<0.100	С	1/5 YR
72-54-8	DDD	608/625	0.1	<0.050	С	1/5 YR
72-55-9	DDE	608/625	0.1	<0.050	С	1/5 YR
50-29-3	DDT	608/625	0.1	<0.050	С	1/5 YR

CASRN	CHEMICAL	EPA ANALYSIS NO.	QUANTIFICATION LEVEL ⁽¹⁾	REPORTING RESULTS	SAMPLE TYPE ⁽²⁾	SAMPLE FREQUENC
8065-48-3	Demeton (synonym = Dementon-O,S)	622	(4)	<0.100	С	1/5 YR
333-41 - 5	Diazinon	622	(4)	<0.100	С	1/5 YR
60-57-1	Dieldrin	608/625	0.1	<0.050	С	1/5 YR
959-98-8	Alpha-Endosulfan (synonym = Endosulfan I)	608/625	0.1	<0.050	С	1/5 YR
33213-65-9	Beta-Endosulfan (synonym = Endosulfan II)	608625	0.1	<0.050	С	1/5 YR
1031-07-8	Endosulfan Sulfate	608/625	0.1	<0.050	С	1/5 YR
72-20-8	Endrin	608/625	0.1	<0.050	С	1/5 YR
7421-93-4	Endrin Aldehyde	608/625	(4)	<0.050	С	1/5 YR
86-50-0	Guthion (synonym = Azinphos Methyl)	622	(4)	<0.100	С	1/5 YR
76-44-8	Heptachlor	608/625	0.05	<0.050	С	1/5 YR
1024-57-3	Heptachlor Epoxide	608/625	(4)	<0.050	С	1/5 YR
319-84-6	Hexachlorocyclohexane Alpha-BHC	608/625	(4)	<0.050	С	1/5 YR
319-85-7	Hexachlorocyclohexane Beta-BHC	608/625	(4)	<0.050	С	1/5 YR
58-89-9	Hexachlorocyclohexane Gamma-BHC (syn. = Lindane)	608/625	(4)	<0.050	С	1/5 YR
143-50-0	Kepone	8081 Extended/ 8270C/8270D	(4)	<0.600	С	1/5 YR
121-75-5	Malathion	614	(4)	<1.000	С	1/5 YR
72-43-5	Methoxychlor	608.2	(4)	<0.050	С	1/5 YR
2385-85-5	Mirex	8081 Extended/ 8270C/8270D	(4)	<0.050	С	1/5 YR
56-38-2	Parathion (synonym = Parathion Ethyl)	614	(4)	<1.000	С	1/5 YR
1336-36-3	PCB, total	608/625	7.0	ND	С	1/5 YR
8001-35-2	Toxaphene	608/625	5.0	ND	С	1/5 YR
entre en	BASE N	EUTRAL E	XTRACTAE	BLES		
83-32-9	Acenaphthene	610/625	10.0	<10.0	С	1/5 YR
120-12-7	Anthracene	610/625	10.0	<10.0	С	1/5 YR
92-87-5	Benzidine	625	(4)	<10.0	Ċ	1/5 YR
56-55-3	Benzo (a) anthracene	610/625	10.0	<10.0	С	1/5 YR
205-99-2	Benzo (b) fluoranthene	610/625	10.0	<10.0	С	1/5 YR
207-08-9	Benzo (k) fluoranthene	610/625	10.0	<10.0	С	1/5 YR
50-32-8	Benzo (a) pyrene	610/625	10.0	<10.0	С	1/5 YR
111-44-4	Bis 2-Chloroethyl Ether	625	(4)	<10.0	С	1/5 YR

CASRN	CHEMICAL	EPA ANALYSIS No.	QUANTIFICATION LEVEL ⁽¹⁾	REPORTING RESULTS	SAMPLE TYPE ⁽²⁾	SAMPLE FREQUENC
108-60-1	Bis 2-Chloroisopropyl Ether	625	(4)	<10.0	С	1/5 YR
117-81 - 7	Bis 2-Ethylhexyl Phthalate (syn. = Di-2-Ethylhexyl Phthalate)	625	10.0	<10.0	С	1/5 YR
85-68-7	Butyl benzyl phthalate	625	10.0	<10.0	С	1/5 YR
91-58-7	2-Chloronaphthalene	625	(4)	<10.0	С	1/5 YR
218-01-9	Chrysene	610/625	10.0	<10.0	С	1/5 YR
53-70-3	Dibenzo (a,h) anthracene	610/625	20.0	<10.0	С	1/5 YR
95-50-1	1,2-Dichlorobenzene	602/624	10.0	<10.0	С	1/5 YR
541-73-1	1,3-Dichlorobenzene	602/624	10.0	<10.0	С	1/5 YR
106-46-7	1,4-Dichlorobenzene	602/624	10.0	<10.0	С	1/5 YR
91-94-1	3,3-Dichlorobenzidine	625	(4)	<10.0	С	1/5 YR
84-66-2	Diethyl phthalate	625	10.0	<10.0	С	1/5 YR
131-11-3	Dimethyl phthalate	625	(4)	<10.0	С	1/5 YR
84-74-2	Di-n-butyl Phthalate (synonym = Dibutyl Phthalate)	625	10.0	<10.0	С	1/5 YR
121-14-2	2,4-Dinitrotoluene	625	10.0	<10.0	С	1/5 YR
122-66-7	1,2-Diphenylhydrazine	625/ 8270C/8270D	(4)	<10.0	С	1/5 YR
206-44-0	Fluoranthene	610/625	10.0	<10.0	С	1/5 YR
86-73-7	Fluorene	610/625	10.0	<10.0	С	1/5 YR
118-74-1	Hexachlorobenzene	625	(4)	<10.0	С	1/5 YR
87-68-3	Hexachlorobutadiene	625	(4)	<10.0	С	1/5 YR
77-47-4	Hexachlorocyclopentadiene	625	(4)	<10.0	С	1/5 YR
67-72-1	Hexachioroethane	625	(4)	<10.0	С	1/5 YR
193-39-5	Indeno(1,2,3-cd)pyrene	610/625	20.0	<10.0	С	1/5 YR
78 - 59-1	Isophorone	625	10.0	<10.0	С	1/5 YR
98-95-3	Nitrobenzene	625	10.0	<10.0	С	1/5 YR
62-75-9	N-Nitrosodimethylamine	625	(4)	<10.0	С	1/5 YR
321-64-7	N-Nitrosodi-n-propylamine	625	(4)	<10.0	С	1/5 YR
86-30-6	N-Nitrosodiphenylamine	625	(4)	<10.0	С	1/5 YR
129-00-0	Pyrene	610/625	10.0	<10.0	С	1/5 YR
120-82-1	1,2,4-Trichlorobenzene	625	10.0	<10.0	С	1/5 YR

VOLATILES

CASRN	CHEMICAL	EPA ANALYSIS NO.	QUANTIFICATION LEVEL ⁽¹⁾	REPORTING RESULTS	SAMPLE TYPE ⁽²⁾	SAMPLE FREQUENC
107-02-8	Acrolein	624	(4)	<50.0	G	1/5 YR
107-13-1	Acrylonitrile	624	(4)	<10.0	G	1/5 YR
71-43-2	Benzene	602/624	10.0	<10.0	G	1/5 YR
75-25-2	Bromoform	624	10.0	<10.0	G	1/5 YR
56-23-5	Carbon Tetrachloride	624	10.0	<10.0	G	1/5 YR
108-90-7	Chlorobenzene (synonym = Monochlorobenzene)	602/624	50.0	<10.0	G	1/5 YR
124-48-1	Chlorodibromomethane	624	10.0	<10.0	G	1/5 YR
67-66-3	Chloroform	624	10.0	<10.0	G	1/5 YR
75-27-4	Dichlorobromomethane	624	10.0	<10.0	G	1/5 YR
107-06-2	1,2-Dichloroethane	624	10.0	<10.0	G	1/5 YR
75-35-4	1,1-Dichloroethylene	624	10.0	<10.0	G	1/5 YR
156-60-5	1,2-trans-dichloroethylene	624	(4)	<10.0	G	1/5 YR
78-87-5	1,2-Dichloropropane	624	(4)	<10.0	G	1/5 YR
542-75-6	1,3-Dichloropropene	624	(4)	<10.0	G	1/5 YR
100-41-4	Ethylbenzene	602/624	10.0	<10.0	G	1/5 YR
74-83-9	Methyl Bromide (synonym = Bromomethane)	624	(4)	<10.0	G	1/5 YR
75-09-2	Methylene Chloride (synonym = Dichloromethane)	624	20.0	<10.0	G	1/5 YR
79-34-5	1,1,2,2-Tetrachloroethane	624	(4)	<10.0	G	1/5 YR
127-18-4	Tetrachioroethylene (synonym = Tetrachioroethene)	624	10.0	<10.0	G	1/5 YR
10-88-3	Toluene	602/624	10.0	<10.0	G	1/5 YR
79-00-5	1,1,2-Trichloroethane	624	(4)	<10.0	G	1/5 YR
79-01-6	Trichloroethylene (synonym = Trichloroethene)	624	10.0	<10.0	G	1/5 YR
75-01-4	Vinyl Chloride	624	10.0	<10.0	G	1/5 YR
	AC	ID EXTRA	CTABLES		The state of the s	e dan en
95-57-8	2-Chlorophenol	625	10.0	<10.0	С	1/5 YR
120-83-2	2,4 Dichlorophenol	625	10.0	<10.0	С	1/5 YR
105-67-9	2,4 Dimethylphenol	625	10.0	<10.0	С	1/5 YR
51-28-5	2,4-Dinitrophenol	625	(4)	<10.0	С	1/5 YR
534-52-1	2-Methyl-4,6-Dinitrophenol	625	(4)	<10.0	С	1/5 YR
25154-52-3	Nonylphenol	ASTM D 7065-06	(4)	<10.0	С	1/5 YR

CASRN	CHEMICAL	EPA ANALYSIS NO.	QUANTIFICATION LEVEL ⁽¹⁾	REPORTING RESULTS	SAMPLE TYPE ⁽²⁾	SAMPLE FREQUENCY
87-86-5	Pentachlorophenol	625	50.0	<10.0	С	1/5 YR
108-95-2	Phenol	625	10.0	<10.0	С	1/5 YR
88-06-2	2,4,6-Trichlorophenol	625	10.0	<10.0	С	1/5 YR
		MISCELLA	NEOUS	a samurana ay gaya ka masan da samu		
776-41-7	Ammonia as NH3-N	350.1	200	590	С	1/5 YR
16887-00-6	Chloride	(3)	(4)	56000	С	1/5 YR
7782-50-5	Chlorine, Total Residual	(3)	100	<100	G	1/5 YR
57-12-5	Cyanide, Free ⁽⁸⁾	ASTM 4282-02	10.0	<10.0	G	1/5 YR
N/A	E. coli / Enterococcus (N/CML)	(3)	(4)	6	G	1/5 YR
18496-25-8	Sulfide, dissolved ⁽⁷⁾	SM 4500 S ² B	100	<10.0	С	1/5 YR
60-10-5	Tributyltin	(5)	(4)	<0.03	G	1/5 YR
471-34-1	Hardness (mg/L as CaCO₃)	(3)	(4)	92.6	С	1/5 YR

Name of Principal Executive Officer or Authorized Asset

Name of Principal Executive Officer or Authorized Agent & Title

Signature of Principal Executive Officer or Authorized Agent & Date

5.30.14

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system or those persons directly responsible for gathering the information, the information submitted is to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment for knowing violations. See 18 U.S.C. Sec. 1001 and 33 U.S.C. Sec. 1319. (Penalties under these statutes may include fines up to \$10,000 and or maximum imprisonment of between 6 months and 5 years.)

FOOTNOTES:

(1) Quantification level (QL) means the minimum levels, concentrations, or quantities of a target variable (e.g. target analyte) that can be reported with a specified degree of confidence in accordance with 1VAC30-45, Certification for Noncommercial Environmental Laboratories, or 1VAC30-46, Accreditation for Commercial Environmental Laboratories.

The quantification levels indicated for the metals are actually Specific Target Values developed for this permit. The Specific Target Value is the approximate value that may initiate a wasteload allocation analysis. Target values are not wasteload allocations or effluent limitations. The Specific Target Values are subject to change based on additional information such as hardness data, receiving stream flow, and design flows.

Units for the quantification level are micrograms/liter unless otherwise specified.

Quality control and quality assurance information (i.e. laboratory certificates of analysis) shall be submitted to document that the required quantification level has been attained.

(2) Sample Type

G = Grab = An individual sample collected in less than 15 minutes. Substances specified with "grab" sample type shall only be collected as grabs. The permittee may analyze multiple grabs and report the average results provided that the individual grab results are also reported. For grab metals samples, the individual samples shall be filtered and preserved immediately upon collection.

- C = Composite = A 4-hour composite unless otherwise specified. The composite shall be a combination of individual samples, taken proportional to flow, obtained at hourly or smaller time intervals. The individual samples may be of equal volume for flows that do not vary by +/- 10 percent over a 24-hour period.
- (3) A specific analytical method is not specified; however, an appropriate method to meet the QL shall be selected from any approved method presented in 40 CFR Part 136.
- (4) The QL is at the discretion of the permittee. If the test result is less than the method QL, a "<[QL]" shall be reported where the actual analytical test QL is substituted for [QL].
- (5) Analytical Methods: Analysis of Butyltins in Environmental Systems by the Virginia Institute of Marine Science, dated November 1996 (currently the only Virginia Environmental Laboratory Accreditation Program (VELAP) accredited method).

- (6) Both Chromium III and Chromium VI may be measured by the total chromium analysis. The total chromium analytical test QL shall be less than or equal to the lesser of the Chromium III or Chromium VI method QL listed above. If the result of the total chromium analysis is less than the analytical test QL, both Chromium III and Chromium VI can be reported as "<[QL]", where the actual analytical test QL is substituted for [QL].
- (7) Dissolved sulfide may be measured by the total sulfide analysis. The total sulfide analytical test QL shall be less than or equal to the dissolved sulfide method QL listed above. If the result of the total sulfide analysis is less than the analytical test QL, dissolved sulfide can be reported as "<[QL]", where the actual analytical test QL is substituted for [QL].
- (8) Free cyanide may be measured by the total cyanide analysis. The total cyanide analytical test QL shall be less than or equal to the free cyanide method QL listed above. If the result of the total cyanide analysis is less than the analytical test QL, free cyanide can be reported as "<[QL]", where the actual analytical test QL is substituted for [QL].

ADDITIONAL NOTES TO PERMIT WRITERS: These notes should be deleted from this attachment.

- 1. The EPA Analysis No.'s cited above are anticipated to be the most frequently employed testing methods. Additional EPA-approved testing methods may be presented in 40 GFR Part 136. Permit writers are encouraged to consult with 40 GFR Part 136 and VELAP with regards to monitoring data obtained with non-cited testing methods.
- Low-level source-specific PCB monitoring and reporting utilizing EPA Method 1668 (A, B, C, or other revisions prior to final promulgation) may be substituted for the PCB monitoring and reporting requirements specified above. See Guidance Memo 09-2001, Guidance for Monitoring of Point Sources for TMDL Development, for implementation procedures.

Attachment G2
Effluent Data from DMR

Outfall Number	Parameter Code	Parameter Description	Quant Avg	Quant Max	Conc Avg	Conc Min	Conc Max	Received Date
001	001	FLOW	0.072	0.094	NULL	NULL	NULL	10-May-11
			0.068	0.087	NULL	NULL	NULL	10-Jun-11
			0.075	0.103	NULL	NULL	NULL	11-Jul-11
			0.079	0.117	NULL	NULL	NULL	10-Aug-11
			0.068	0.106	NULL	NULL	NULL	12-Sep-11
			0.074	0.210	NULL	NULL	NULL	11-Oct-11
			0.055	0.069	NULL	NULL	NULL	10-Nov-11
			0.058	0.075	NULL	NULL	NULL	9-Dec-11
			0.064	0.090	NULL	NULL	NULL	10-Jan-12
			0.056	0.065	NULL	NULL	NULL	10-Feb-12
			0.058	0.083	NULL	NULL	NULL	12-Mar-12
			0.065	0.089	NULL	NULL	NULL	10-Apr-12
			0.065	0.086	NULL	NULL	NULL	10-May-12
			0.074	0.101	NULL	NULL	NULL	11-Jun-12
			0.073	0.086	NULL	NULL	NULL	10-Jul-12
			0.063	0.105	NULL	NULL	NULL	10-Aug-12
			0.065	0.075	NULL	NULL	NULL	10-Sep-12
			0.057	0.070	NULL	NULL	NULL	10-Oct-12
			0.053	0.079	NULL	NULL	NULL	13-Nov-12
			0.05	0.07	NULL	NULL	NULL	10-Dec-12
			0.056	0.074	NULL	NULL	NULL	10-Jan-13
			0.066	0.107	NULL	NULL	NULL	11-Feb-13
			0.059	0.090	NULL	NULL	NULL	11-Mar-13
			0.083	0.121	NULL	NULL	NULL	10-Apr-13
			0.068	0.084	NULL	NULL	NULL	10-May-13
			0.064	0.090	NULL	NULL	NULL	10-Jun-13
			0.069	0.092	NULL	NULL	NULL	10-Jul-13
			0.070	0.086	NULL	NULL	NULL	12-Aug-13
			0.060	0.096	NULL	NULL	NULL	9-Sep-13
			0.062	0.082	NULL	NULL	NULL	10-Oct-13
			0.063	0.080	NULL	NULL	NULL	12-Nov-13
			0.046	0.070	NULL	NULL	NULL	9-Dec-13
			0.049	0.068	NULL	NULL	NULL	10-Jan-14
			0.04	0.059	NULL	NULL	NULL	10-Feb-14
			0.051	0.067	NULL	NULL	NULL	10-Mar-14
			0.054	0.068	NULL	NULL	NULL	10-Apr-14
001	002	рН	NULL	NULL	NULL	7.1	7.40	10-Jun-10
			NULL	NULL	NULL	7.2	7.80	12-Jul-10
			NULL	NULL	NULL	7.1	7.60	10-Aug-10
			NULL	NULL	NULL	7.3	7.80	10-Sep-10
			NULL	NULL	NULL	7.2	7.90	12-Oct-10
			NULL	NULL	NULL	7.1	7.80	10-Nov-10
			NULL	NULL	NULL	7.0	7.80	10-Dec-10
			NULL	NULL	NULL	7.2	7.90	10-Jan-11
			NULL	NULL	NULL	7.1	7.90	10-Feb-11
			NULL	NULL	NULL	6.7	7.50	10-Mar-11
			NULL	NULL	NULL	6.8	7.10	

Outfall Number	Parameter Code	Parameter Description	Quant Avg	Quant Max	Conc Avg	Conc Min	Conc Max	Received Date
001	002	рН	NULL	NULL	NULL	7.0	7.40	10-May-11
			NULL	NULL	NULL	6.9	7.40	10-Jun-11
			NULL	NULL	NULL	7.0	7.50	11-Jul-11
			NULL	NULL	NULL	7.2	7.70	10-Aug-11
			NULL	NULL	NULL	6.5	7.80	12-Sep-11
			NULL	NULL	NULL	7.1	7.70	11-Oct-11
			NULL	NULL	NULL	6.8	7.50	10-Nov-11
			NULL	NULL	NULL	6.9	7.50	9-Dec-11
			NULL	NULL	NULL	7.2	7.60	10-Jan-12
			NULL	NULL	NULL	7.2	7.80	10-Feb-12
			NULL	NULL	NULL	7.1	7.10	12-Mar-12
			NULL	NULL	NULL	7.1	7.60	10-Apr-12
			NULL	NULL	NULL	7.2	7.80	10-May-12
			NULL	NULL	NULL	7.1	7.90	11-Jun-12
			NULL	NULL	NULL	7.0	7.60	10-Jul-12
			NULL	NULL	NULL	7.0	7.60	10-Aug-12
			NULL	NULL	NULL	7.1	7.60	10-Sep-12
			NULL	NULL	NULL	6.9	7.60	10-Oct-12
			NULL	NULL	NULL	6.7	7.40	13-Nov-12
			NULL	NULL	NULL	6.6	7.40	10-Dec-12
			NULL	NULL	NULL	6.8	7.40	10-Jan-13
			NULL	NULL	NULL	6.7	7.50	11-Feb-13
			NULL	NULL	NULL	7.0	7.70	11-Mar-13
			NULL	NULL	NULL	6.7	7.50	10-Apr-13
			NULL	NULL	NULL	6.7	7.60	10-May-13
			NULL	NULL	NULL	6.8	7.20	10-Jun-13
			NULL NULL	NULL	NULL	6.6 6.8	7.30	10-Jul-13
			NULL	NULL NULL	NULL	6.8	7.40 7.50	12-Aug-13
			NULL	NULL	NULL	7.0	7.80	9-Sep-13 10-Oct-13
			NULL	NULL	NULL	7.1	7.60	12-Nov-13
			NULL	NULL	NULL	7.1	7.90	9-Dec-13
			NULL	NULL	NULL	7.1	7.60	10-Jan-14
			NULL	NULL	NULL	7.0	7.40	10-Feb-14
			NULL	NULL	NULL	7.0	7.60	10-Mar-14
			NULL	NULL	NULL	7.0	7.60	10-Apr-14
001	003	BOD5	492	984	2.5	NULL	5.0	10-Jun-10
-	-		<ql< td=""><td><ql< td=""><td><ql< td=""><td>NULL</td><td><ql< td=""><td>12-Jul-10</td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>NULL</td><td><ql< td=""><td>12-Jul-10</td></ql<></td></ql<></td></ql<>	<ql< td=""><td>NULL</td><td><ql< td=""><td>12-Jul-10</td></ql<></td></ql<>	NULL	<ql< td=""><td>12-Jul-10</td></ql<>	12-Jul-10
			<ql< td=""><td><ql< td=""><td><ql< td=""><td>NULL</td><td><ql< td=""><td>10-Aug-10</td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>NULL</td><td><ql< td=""><td>10-Aug-10</td></ql<></td></ql<></td></ql<>	<ql< td=""><td>NULL</td><td><ql< td=""><td>10-Aug-10</td></ql<></td></ql<>	NULL	<ql< td=""><td>10-Aug-10</td></ql<>	10-Aug-10
			<ql< td=""><td><ql< td=""><td><ql< td=""><td>NULL</td><td><ql< td=""><td>10-Sep-10</td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>NULL</td><td><ql< td=""><td>10-Sep-10</td></ql<></td></ql<></td></ql<>	<ql< td=""><td>NULL</td><td><ql< td=""><td>10-Sep-10</td></ql<></td></ql<>	NULL	<ql< td=""><td>10-Sep-10</td></ql<>	10-Sep-10
			<ql< td=""><td><ql< td=""><td><ql< td=""><td>NULL</td><td><ql< td=""><td>12-Oct-10</td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>NULL</td><td><ql< td=""><td>12-Oct-10</td></ql<></td></ql<></td></ql<>	<ql< td=""><td>NULL</td><td><ql< td=""><td>12-Oct-10</td></ql<></td></ql<>	NULL	<ql< td=""><td>12-Oct-10</td></ql<>	12-Oct-10
			705	1410	3.5	NULL	6.9	10-Nov-10
			792	1584	4.7	NULL	9.3	10-Dec-10
			3165	4306	11.3	NULL	14.4	10-Jan-11
			2772	4039	13.5	NULL	19.4	10-Feb-11
			4183	4996	17.2	NULL	19.7	10-Mar-11
			888	1775	3.4	NULL	6.7	11-Apr-11
			<ql< td=""><td><ql< td=""><td><ql< td=""><td>NULL</td><td><ql< td=""><td>10-May-11</td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>NULL</td><td><ql< td=""><td>10-May-11</td></ql<></td></ql<></td></ql<>	<ql< td=""><td>NULL</td><td><ql< td=""><td>10-May-11</td></ql<></td></ql<>	NULL	<ql< td=""><td>10-May-11</td></ql<>	10-May-11
			1198	1931	4.7	NULL	8.1	10-Jun-11

Outfall Number	Parameter Code	Parameter Description	Quant Avg	Quant Max	Conc Avg	Conc Min	Conc Max	Received Date
001	003	BOD5	787	1575	2.6	NULL	5.2	11-Jul-11
			3114	4143	11.3	NULL	12.3	10-Aug-11
			1216	2432	6.3	NULL	12.6	12-Sep-11
			4534	7267	13.5	NULL	20.0	11-Oct-11
			539	1079	3.8	NULL	7.5	10-Nov-11
			521	1042	2.6	NULL	5.1	9-Dec-11
			668	1335	2.8	NULL	5.6	10-Jan-12
			3225	5328	16.7	NULL	27.6	10-Feb-12
			2914	4087	13.1	NULL	18.3	12-Mar-12
			2055	2546	9.8	NULL	11.4	10-Apr-12
			965	1930	5.1	NULL	10.2	10-May-12
			<ql< td=""><td><ql< td=""><td><ql< td=""><td>NULL</td><td><ql< td=""><td>11-Jun-12</td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>NULL</td><td><ql< td=""><td>11-Jun-12</td></ql<></td></ql<></td></ql<>	<ql< td=""><td>NULL</td><td><ql< td=""><td>11-Jun-12</td></ql<></td></ql<>	NULL	<ql< td=""><td>11-Jun-12</td></ql<>	11-Jun-12
			1825	1907	6.7	NULL	6.9	10-Jul-12
			428	856	2.9	NULL	5.8	10-Aug-12
			<ql< td=""><td><ql< td=""><td><ql< td=""><td>NULL</td><td><ql< td=""><td>10-Sep-12</td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>NULL</td><td><ql< td=""><td>10-Sep-12</td></ql<></td></ql<></td></ql<>	<ql< td=""><td>NULL</td><td><ql< td=""><td>10-Sep-12</td></ql<></td></ql<>	NULL	<ql< td=""><td>10-Sep-12</td></ql<>	10-Sep-12
			<ql< td=""><td><ql< td=""><td><ql< td=""><td>NULL</td><td><ql< td=""><td>10-Oct-12</td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>NULL</td><td><ql< td=""><td>10-Oct-12</td></ql<></td></ql<></td></ql<>	<ql< td=""><td>NULL</td><td><ql< td=""><td>10-Oct-12</td></ql<></td></ql<>	NULL	<ql< td=""><td>10-Oct-12</td></ql<>	10-Oct-12
			<ql< td=""><td><ql< td=""><td><ql< td=""><td>NULL</td><td><ql< td=""><td>13-Nov-12</td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>NULL</td><td><ql< td=""><td>13-Nov-12</td></ql<></td></ql<></td></ql<>	<ql< td=""><td>NULL</td><td><ql< td=""><td>13-Nov-12</td></ql<></td></ql<>	NULL	<ql< td=""><td>13-Nov-12</td></ql<>	13-Nov-12
			<ql< td=""><td><ql< td=""><td><ql< td=""><td>NULL</td><td><ql< td=""><td>10-Dec-12</td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>NULL</td><td><ql< td=""><td>10-Dec-12</td></ql<></td></ql<></td></ql<>	<ql< td=""><td>NULL</td><td><ql< td=""><td>10-Dec-12</td></ql<></td></ql<>	NULL	<ql< td=""><td>10-Dec-12</td></ql<>	10-Dec-12
			<ql< td=""><td><ql< td=""><td><ql< td=""><td>NULL</td><td><ql< td=""><td>10-Jan-13</td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>NULL</td><td><ql< td=""><td>10-Jan-13</td></ql<></td></ql<></td></ql<>	<ql< td=""><td>NULL</td><td><ql< td=""><td>10-Jan-13</td></ql<></td></ql<>	NULL	<ql< td=""><td>10-Jan-13</td></ql<>	10-Jan-13
			739	1478	2.8	NULL	5.5	11-Feb-13
			1773	1979	10.1	NULL	13.8	11-Mar-13
			5014	8371	14.4	NULL	22.8	10-Apr-13
			3005	6009	12.6	NULL	25.2	10-May-13
			<ql< td=""><td><ql< td=""><td><ql< td=""><td>NULL</td><td><ql< td=""><td>10-Jun-13</td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>NULL</td><td><ql< td=""><td>10-Jun-13</td></ql<></td></ql<></td></ql<>	<ql< td=""><td>NULL</td><td><ql< td=""><td>10-Jun-13</td></ql<></td></ql<>	NULL	<ql< td=""><td>10-Jun-13</td></ql<>	10-Jun-13
			<ql< td=""><td><ql< td=""><td><ql< td=""><td>NULL</td><td><ql< td=""><td>10-Jul-13</td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>NULL</td><td><ql< td=""><td>10-Jul-13</td></ql<></td></ql<></td></ql<>	<ql< td=""><td>NULL</td><td><ql< td=""><td>10-Jul-13</td></ql<></td></ql<>	NULL	<ql< td=""><td>10-Jul-13</td></ql<>	10-Jul-13
			<ql< td=""><td><ql< td=""><td><ql< td=""><td>NULL</td><td><ql< td=""><td>12-Aug-13</td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>NULL</td><td><ql< td=""><td>12-Aug-13</td></ql<></td></ql<></td></ql<>	<ql< td=""><td>NULL</td><td><ql< td=""><td>12-Aug-13</td></ql<></td></ql<>	NULL	<ql< td=""><td>12-Aug-13</td></ql<>	12-Aug-13
			<ql< td=""><td><ql< td=""><td><ql< td=""><td>NULL</td><td><ql< td=""><td>9-Sep-13</td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>NULL</td><td><ql< td=""><td>9-Sep-13</td></ql<></td></ql<></td></ql<>	<ql< td=""><td>NULL</td><td><ql< td=""><td>9-Sep-13</td></ql<></td></ql<>	NULL	<ql< td=""><td>9-Sep-13</td></ql<>	9-Sep-13
			<ql< td=""><td><ql< td=""><td><ql< td=""><td>NULL</td><td><ql< td=""><td>10-Oct-13</td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>NULL</td><td><ql< td=""><td>10-Oct-13</td></ql<></td></ql<></td></ql<>	<ql< td=""><td>NULL</td><td><ql< td=""><td>10-Oct-13</td></ql<></td></ql<>	NULL	<ql< td=""><td>10-Oct-13</td></ql<>	10-Oct-13
			719	1438	3.8	NULL	7.6	12-Nov-13
			<ql< td=""><td><ql< td=""><td><ql< td=""><td>NULL</td><td><ql< td=""><td>9-Dec-13</td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>NULL</td><td><ql< td=""><td>9-Dec-13</td></ql<></td></ql<></td></ql<>	<ql< td=""><td>NULL</td><td><ql< td=""><td>9-Dec-13</td></ql<></td></ql<>	NULL	<ql< td=""><td>9-Dec-13</td></ql<>	9-Dec-13
			1367	1891	8.2	NULL	11.1	10-Jan-14
			394	787	2.6	NULL	5.2	10-Feb-14
			763	1526	3.2	NULL	6.4	10-Mar-14
			2021	2188	11.3	NULL	12.3	10-Apr-14
001	004	TSS	1252	1363	5.9	NULL	6.0	10-Jun-10
			1671	2902	8.1	NULL	14.2	12-Jul-10
			669	1104	3.2	NULL	5.4	10-Aug-10
			2286	2898	9.9	NULL	13.2	10-Sep-10
			1192	1423	6.7	NULL	8.0	12-Oct-10
			763	954	3.5	NULL	4.2	10-Nov-10
			1124	1294	6.6	NULL	7.6	10-Dec-10
			2284	3469	8.0	NULL	11.6	10-Jan-11
			2049	3456	9.9	NULL	16.6	10-Feb-11
			3612	6670	14.4	NULL	26.3	10-Mar-11
			951	1166	3.4	NULL	4.4	11-Apr-11
			965	1021	3.9	NULL	4.0	10-May-11
			2848	4360	10.8	NULL	16.0	10-Jun-11
			3240	5511	11.2	NULL	18.2	11-Jul-11
			2254	3773	7.4	NULL	11.2	10-Aug-11

Outfall Number	Parameter Code	Parameter Description	Quant Avg	Quant Max	Conc Avg	Conc Min	Conc Max	Received Date
001	004	TSS	808	1192	3.6	NULL	5.0	12-Sep-11
			4280	7376	12.5	NULL	20.3	11-Oct-11
			977	1465	6.0	NULL	8.6	10-Nov-11
			1717	2167	8.4	NULL	10.6	9-Dec-11
			866	1240	3.9	NULL	5.2	10-Jan-12
			3330	5598	17.2	NULL	29.0	10-Feb-12
			1831	1831	8.2	NULL	8.2	12-Mar-12
			1309	1653	6.2	NULL	7.4	10-Apr-12
			1824	2082	10.1	NULL	11.0	10-May-12
			1416	1581	5.7	NULL	5.8	11-Jun-12
			2239	3815	8.2	NULL	14.0	10-Jul-12
			1510	1927	7.5	NULL	7.6	10-Aug-12
			2506	4330	11.9	NULL	20.8	10-Sep-12
			1598	1942	7.8	NULL	9.0	10-Oct-12
			1010	1811	5.8	NULL	10.4	13-Nov-12
			774	1366	4.9	NULL	8.2	10-Dec-12
			1291	2083	5.7	NULL	8.6	10-Jan-13
			3831	7148	14.5	NULL	26.6	11-Feb-13
			695	1162	2.9	NULL	3.7	11-Mar-13
			5565	9362	16.0	NULL	25.5	10-Apr-13
			4906	9276	20.7	NULL	38.9	10-May-13
			764	795	4.2	NULL	5.0	10-Jun-13
			1476	2116	6.0	NULL	8.6	10-Jul-13
			718	954	3.0	NULL	4.0	12-Aug-13
			1463	1978	8.6	NULL	9.5	9-Sep-13
			2313	3720	10.1	NULL	15.6	10-Oct-13
			1137	1476	5.8	NULL	7.8	12-Nov-13
			494	613	2.6	NULL	3.0	9-Dec-13
			1712	2708	10.2	NULL	15.9	10-Jan-14
			462	484	3.1	NULL	3.2	10-Feb-14
			812	1335	3.8	NULL	5.6	10-Mar-14
			878	1174	4.9	NULL	6.6	10-Apr-14
001	007	DO	NULL	NULL	NULL	8.0	NULL	10-Jun-10
			NULL	NULL	NULL	7.3	NULL	12-Jul-10
			NULL	NULL	NULL	7.4	NULL	10-Aug-10
			NULL	NULL	NULL	7.5	NULL	10-Sep-10
			NULL	NULL	NULL	7.2	NULL	12-Oct-10
			NULL	NULL	NULL	7.7	NULL	10-Nov-10
			NULL	NULL	NULL	7.7	NULL	10-Dec-10
			NULL	NULL	NULL	8.6	NULL	10-Jan-11
			NULL	NULL	NULL	9.9	NULL	10-Feb-11
			NULL	NULL	NULL	9.1	NULL	10-Mar-11
			NULL	NULL	NULL	9.4	NULL	11-Apr-11
			NULL	NULL	NULL	8.3	NULL	10-May-11
			NULL	NULL	NULL	7.8	NULL	10-Jun-11
			NULL	NULL	NULL	7.5	NULL	11-Jul-11
			NULL	NULL	NULL	5.1	NULL	10-Aug-11
			NULL	NULL	NULL	6.9	NULL	12-Sep-11
			NULL	NULL	NULL	7.4	NULL	11-Oct-11

Outfall	Parameter	Parameter	Quant	Quant	Conc	Conc	Conc	Received
Number	Code	Description	Avg	Max	Avg	Min	Max	Date
001	007	DO	NULL	NULL	NULL	6.4	NULL	10-Nov-11
			NULL	NULL	NULL	7.9	NULL	9-Dec-11
			NULL	NULL	NULL	8.3	NULL	10-Jan-12
			NULL	NULL	NULL	8.4	NULL	10-Feb-12
			NULL	NULL	NULL	7.5	NULL	12-Mar-12
			NULL	NULL	NULL	8.8	NULL	10-Apr-12
			NULL	NULL	NULL	8.8	NULL	10-May-12
			NULL	NULL	NULL	7.9	NULL	11-Jun-12
			NULL	NULL	NULL	7.4	NULL	10-Jul-12
			NULL	NULL	NULL	6.4	NULL	10-Aug-12
			NULL	NULL	NULL	7.3	NULL	10-Sep-12
			NULL	NULL	NULL	7.5	NULL	10-Oct-12
			NULL	NULL	NULL	7.9	NULL	13-Nov-12
			NULL	NULL	NULL	7.5	NULL	10-Dec-12
			NULL	NULL	NULL	8.4	NULL	10-Jan-13
			NULL	NULL	NULL	9.5	NULL	11-Feb-13
			NULL	NULL	NULL	9.5	NULL	11-Mar-13
			NULL	NULL	NULL	6.9	NULL	10-Apr-13
			NULL	NULL	NULL	7.0	NULL	10-May-13
			NULL	NULL	NULL	6.2	NULL	10-Jun-13
			NULL	NULL	NULL	5.4	NULL	10-Jul-13
			NULL	NULL	NULL	6.5	NULL	12-Aug-13
			NULL	NULL	NULL	6.8	NULL	9-Sep-13
			NULL	NULL	NULL	6.9	NULL	10-Oct-13
			NULL	NULL	NULL	6.8	NULL	12-Nov-13
			NULL	NULL	NULL	7.3	NULL	9-Dec-13
			NULL	NULL	NULL	7.4	NULL	10-Jan-14
			NULL	NULL	NULL	9.0	NULL	10-Feb-14
			NULL	NULL	NULL	8.7	NULL	10-Mar-14
			NULL	NULL	NULL	9.3	NULL	10-Apr-14
001	068	TKN (N-KJEL)	NULL	NULL	<ql< th=""><th>NULL</th><th><ql< th=""><th>10-Jun-10</th></ql<></th></ql<>	NULL	<ql< th=""><th>10-Jun-10</th></ql<>	10-Jun-10
			NULL	NULL	<ql< th=""><th>NULL</th><th><ql< th=""><th>12-Jul-10</th></ql<></th></ql<>	NULL	<ql< th=""><th>12-Jul-10</th></ql<>	12-Jul-10
			NULL	NULL	<ql< th=""><th>NULL</th><th><ql< th=""><th>10-Aug-10</th></ql<></th></ql<>	NULL	<ql< th=""><th>10-Aug-10</th></ql<>	10-Aug-10
			NULL	NULL	<ql< th=""><th>NULL</th><th><ql< th=""><th>10-Sep-10</th></ql<></th></ql<>	NULL	<ql< th=""><th>10-Sep-10</th></ql<>	10-Sep-10
			NULL	NULL	<ql< th=""><th>NULL</th><th><ql< th=""><th>12-Oct-10</th></ql<></th></ql<>	NULL	<ql< th=""><th>12-Oct-10</th></ql<>	12-Oct-10
			NULL	NULL	1.23	NULL	2.45	10-Nov-10
			NULL	NULL	4.59	NULL	9.18	10-Dec-10
			NULL	NULL	10.70	NULL	10.70	10-Jan-11
			NULL	NULL	7.50	NULL	7.50	10-Feb-11
			NULL	NULL	<ql< th=""><th>NULL</th><th><ql< th=""><th>10-Mar-11</th></ql<></th></ql<>	NULL	<ql< th=""><th>10-Mar-11</th></ql<>	10-Mar-11
			NULL	NULL	1.90	NULL	1.90	11-Apr-11
			NULL	NULL	<ql< th=""><th>NULL</th><th><ql< th=""><th>10-May-11</th></ql<></th></ql<>	NULL	<ql< th=""><th>10-May-11</th></ql<>	10-May-11
			NULL	NULL	<ql< th=""><th>NULL</th><th><ql< th=""><th>10-Jun-11</th></ql<></th></ql<>	NULL	<ql< th=""><th>10-Jun-11</th></ql<>	10-Jun-11
			NULL	NULL	<ql< th=""><th>NULL</th><th><ql< th=""><th>11-Jul-11</th></ql<></th></ql<>	NULL	<ql< th=""><th>11-Jul-11</th></ql<>	11-Jul-11
			NULL	NULL	4.05	NULL	4.05	10-Aug-11
			NULL	NULL	7.82	NULL	7.82	12-Sep-11
			NULL	NULL	13.30	NULL	13.30	11-Oct-11
			NULL	NULL	<ql< th=""><th>NULL</th><th><ql< th=""><th>10-Nov-11</th></ql<></th></ql<>	NULL	<ql< th=""><th>10-Nov-11</th></ql<>	10-Nov-11
			NULL	NULL	1.06	NULL	1.06	9-Dec-11
			NULL	NULL	9.10	NULL	9.10	10-Jan-12

Outfall	Parameter	Parameter	Quant	Quant	Conc	Conc	Conc	Received
Number	Code	Description	Avg	Max	Avg	Min	Max	Date
001	068	TKN (N-KJEL)	NULL	NULL	10.90	NULL	10.90	10-Feb-12
			NULL	NULL	12.51	NULL	17.10	12-Mar-12
			NULL	NULL	4.93	NULL	4.93	10-Apr-12
			NULL	NULL	2.08	NULL	2.08	10-May-12
			NULL	NULL	2.42	NULL	2.42	11-Jun-12
			NULL	NULL	2.27	NULL	2.27	10-Jul-12
			NULL	NULL	<ql< td=""><td>NULL</td><td><ql< td=""><td>10-Aug-12</td></ql<></td></ql<>	NULL	<ql< td=""><td>10-Aug-12</td></ql<>	10-Aug-12
			NULL	NULL	<ql< td=""><td>NULL</td><td><ql< td=""><td>10-Sep-12</td></ql<></td></ql<>	NULL	<ql< td=""><td>10-Sep-12</td></ql<>	10-Sep-12
			NULL	NULL	<ql< td=""><td>NULL</td><td><ql< td=""><td>10-Oct-12</td></ql<></td></ql<>	NULL	<ql< td=""><td>10-Oct-12</td></ql<>	10-Oct-12
			NULL	NULL	<ql< td=""><td>NULL</td><td><ql< td=""><td>13-Nov-12</td></ql<></td></ql<>	NULL	<ql< td=""><td>13-Nov-12</td></ql<>	13-Nov-12
			NULL	NULL	<ql< td=""><td>NULL</td><td><ql< td=""><td>10-Dec-12</td></ql<></td></ql<>	NULL	<ql< td=""><td>10-Dec-12</td></ql<>	10-Dec-12
			NULL	NULL	1.32	NULL	1.32	10-Jan-13
			NULL	NULL	6.10	NULL	6.10	11-Feb-13
			NULL	NULL	0.68	NULL	0.68	11-Mar-13
			NULL	NULL	9.52	NULL	9.52	10-Apr-13
			NULL	NULL	13.70	NULL	13.70	10-May-13
			NULL	NULL	1.18	NULL	1.37	10-Jun-13
			NULL	NULL	1.20	NULL	1.20	10-Jul-13
			NULL	NULL	0.86	NULL	0.86	12-Aug-13
			NULL	NULL	1.31	NULL	1.51	9-Sep-13
			NULL	NULL	0.87	NULL	0.87	10-Oct-13
			NULL	NULL	5.77	NULL	5.77	12-Nov-13
			NULL	NULL	0.88	NULL	0.88	9-Dec-13
			NULL	NULL	0.99	NULL	0.99	10-Jan-14
			NULL	NULL	0.91	NULL	1.40	10-Feb-14
			NULL	NULL	1.22	NULL	1.22	10-Mar-14
			NULL	NULL	4.18	NULL	4.18	10-Apr-14
001	120	E.COLI	NULL	NULL	6	NULL	7	10-Jun-10
			NULL	NULL	9	NULL	91	12-Jul-10
			NULL	NULL	6	NULL	17	10-Aug-10
			NULL	NULL	15	NULL	64	10-Sep-10
			NULL	NULL	12	NULL	17	12-Oct-10
			NULL	NULL	26	NULL	260	10-Nov-10
			NULL	NULL	6	NULL	20	10-Dec-10
			NULL	NULL	5	NULL	30	10-Jan-11
			NULL	NULL	2	NULL	4	10-Feb-11
			NULL	NULL	3	NULL	6	10-Mar-11
			NULL	NULL	3	NULL	17	11-Apr-11
			NULL	NULL	3	NULL	10	10-May-11
			NULL	NULL	8	NULL	15	10-Jun-11
			NULL	NULL	14	NULL	50	11-Jul-11
			NULL	NULL	26	NULL	285	10-Aug-11
			NULL	NULL	19	NULL	38	12-Sep-11
			NULL	NULL	1371	NULL	2420	11-Oct-11
			NULL	NULL	53	NULL	1203	10-Nov-11
			NULL	NULL	23	NULL	37	9-Dec-11
			NULL	NULL	9	NULL	11	10-Jan-12
			NULL	NULL	8	NULL	17	10-Feb-12
			NULL	NULL	4	NULL	8	12-Mar-12
			NULL	NULL	4	NULL	5	10-Apr-12

Outfall	Parameter	Parameter	Quant	Quant	Conc	Conc	Conc	Received
Number	Code	Description	Avg	Max	Avg	Min	Max	Date
001	120	E.COLI	NULL	NULL	6	NULL	24	10-May-12
			NULL	NULL	7	NULL	17	11-Jun-12
			NULL	NULL	34	NULL	53	10-Jul-12
			NULL	NULL	13	NULL	44	10-Aug-12
			NULL	NULL	11	NULL	22	10-Sep-12
			NULL	NULL	4	NULL	20	10-Oct-12
			NULL	NULL	21	NULL	43	13-Nov-12
			NULL	NULL	17	NULL	41	10-Dec-12
			NULL	NULL	14	NULL	28	10-Jan-13
			NULL	NULL	3	NULL	10	11-Feb-13
			NULL	NULL	54	NULL	1553	11-Mar-13
			NULL	NULL	31	NULL	649	10-Apr-13
			NULL	NULL	9	NULL	87	10-May-13
			NULL	NULL	6	NULL	8	10-Jun-13
			NULL	NULL	8	NULL	19	10-Jul-13
			NULL	NULL	6	NULL	16	12-Aug-13
			NULL	NULL	12	NULL	15	9-Sep-13
			NULL	NULL	7	NULL	12	10-Oct-13
			NULL	NULL	7	NULL	19	12-Nov-13
			NULL	NULL	6	NULL	30	9-Dec-13
			NULL	NULL	4	NULL	14	10-Jan-14
			NULL	NULL	2	NULL	23	10-Feb-14
			NULL	NULL	2	NULL	3	10-Mar-14
			NULL	NULL	4	NULL	63	10-Apr-14

Attachment G3

MIX.exe Printout

Mixing Zone Predictions for Hanover Courthouse STP

Effluent Flow = 0.08 MGD Stream 7Q10 = 33 MGD Stream 30Q10 = 38 MGD Stream 1Q10 = 30 MGD Stream slope = 0.00033 ft/ft Stream width = 75 ft

Bottom scale = 2Channel scale = 1

Mixing Zone Predictions @ 7Q10

= 1.5487 ft Depth Length = 4992.56 ftVelocity = .4409 ft/sec Residence Time = .1311 days

Recommendation:

A complete mix assumption is appropriate for this situation and the entire 7Q10 may be used.

Mixing Zone Predictions @ 30Q10

Depth = 1.6876 ft Length = 4636.99 ft Velocity = .4657 ft/sec Residence Time = .1152 days

Recommendation:

A complete mix assumption is appropriate for this situation and the entire 30Q10 may be used.

Mixing Zone Predictions @ 1Q10

Depth = 1.4616 ft Length = 5247.25 ftVelocity = .4248 ft/sec Residence Time = 3.4314 hours

Recommendation:

A complete mix assumption is appropriate for this situation providing no more than 29.14% of the 1Q10 is used.

Attachment G4 MSTRANTI and STATS.exe Printouts

FRESHWATER WATER QUALITY CRITERIA / WASTELOAD ALLOCATION ANALYSIS

Facility Name: Hanover Courthouse STP Permit No.: VA0062154

Receiving Stream: Version: OWP Guidance Memo 00-2011 (8/24/00)

Stream Information			Stream Flows		
Mean Hardness (as CaCO3) =	33.7	mg/L	1Q10 (Annual) =	30	MGD
90% Temperature (Annual) =	25.8	deg C	7Q10 (Annual) =	33	MGD
90% Temperature (Wet season) =		deg C	30Q10 (Annual) =	38	MGD
90% Maximum pH =	7.5	SU	1Q10 (Wet season) =		MGD
10% Maximum pH =	6.5	SU	30Q10 (Wet season)	=	MGD
Tier Designation (1 or 2) =	2		30Q5 =	48	MGD
Public Water Supply (PWS) Y/N? =	n		Harmonic Mean =	183	MGD
Trout Present Y/N? =	n		Annual Average =	N/A	MGD
Early Life Stages Present Y/N? =	у				

Mixing Information		
Annual - 1Q10 Mix =	29.1	%
- 7Q10 Mix =	100	%
- 30Q10 Mix =	100	%
Wet Season - 1Q10 Mix =		%
- 30Q10 Mix =		%

Effluent Information		
Mean Hardness (as CaCO3) =	92.6	mg/L
90% Temp (Annual) =	25.9	deg C
90% Temp (Wet season) =		deg C
90% Maximum pH =	7.84	SU
10% Maximum pH =	7.4	SU
Discharge Flow =	0.08	MGD

Parameter	Background			Wasteload	Allocations			Antidegradation Baseline			Antidegradation Allocations				Most Limiting Allocations						
(ug/l unless noted)	Conc.	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН
Acenapthene	0			na	2.7E+03			na	1.6E+06			na	2.7E+02			na	1.6E+05			na	1.6E+05
Acrolein	0			na	7.8E+02			na	4.7E+05			na	7.8E+01			na	4.7E+04			na	4.7E+04
Acrylonitrile ^C	0			na	6.6E+00			na	1.5E+04			na	6.6E-01			na	1.5E+03			na	1.5E+03
Aldrin ^C	0	3.0E+00		na	1.4E-03	3.3E+02		na	3.2E+00	7.5E-01		na	1.4E-04	2.8E+02		na	3.2E-01	2.8E+02		na	3.2E-01
Ammonia-N (mg/l) (Yearly) Ammonia-N (mg/l)	0	1.98E+01	2.11E+00	na		2.2E+03	1.0E+03	na		4.97E+00	5.27E-01	na		1.9E+03	2.5E+02	na		1.9E+03	2.5E+02	na	-
(High Flow)	0	1.13E+01	3.03E+00	na		1.1E+01	3.0E+00	na		2.83E+00	7.57E-01	na		2.8E+00	7.6E-01	na		2.8E+00	7.6E-01	na	
Anthracene	0			na	1.1E+05			na	6.6E+07			na	1.1E+04			na	6.6E+06			na	6.6E+06
Antimony	0			na	4.3E+03			na	2.6E+06			na	4.3E+02			na	2.6E+05			na	2.6E+05
Arsenic	0	3.4E+02	1.5E+02	na		3.7E+04	6.2E+04	na		8.5E+01	3.8E+01	na		3.2E+04	1.6E+04	na		3.2E+04	1.6E+04	na	
Barium	0			na				na				na				na				na	
Benzene ^C	0			na	7.1E+02			na	1.6E+06			na	7.1E+01			na	1.6E+05			na	1.6E+05
Benzidine ^C	0			na	5.4E-03			na	1.2E+01			na	5.4E-04			na	1.2E+00			na	1.2E+00
Benzo (a) anthracene ^C	0			na	4.9E-01			na	1.1E+03			na	4.9E-02			na	1.1E+02			na	1.1E+02
Benzo (b) fluoranthene ^C	0			na	4.9E-01			na	1.1E+03			na	4.9E-02			na	1.1E+02			na	1.1E+02
Benzo (k) fluoranthene ^C	0			na	4.9E-01			na	1.1E+03			na	4.9E-02			na	1.1E+02			na	1.1E+02
Benzo (a) pyrene ^C	0			na	4.9E-01			na	1.1E+03			na	4.9E-02			na	1.1E+02			na	1.1E+02
Bis2-Chloroethyl Ether	0			na	1.4E+01			na	8.4E+03			na	1.4E+00			na	8.4E+02			na	8.4E+02
Bis2-Chloroisopropyl Ether	0			na	1.7E+05			na	1.0E+08			na	1.7E+04			na	1.0E+07			na	1.0E+07
Bromoform ^C	0			na	3.6E+03			na	8.2E+06			na	3.6E+02			na	8.2E+05			na	8.2E+05
Butylbenzylphthalate	0			na	5.2E+03			na	3.1E+06			na	5.2E+02			na	3.1E+05			na	3.1E+05
Cadmium	0	1.2E+00	4.8E-01	na		1.3E+02	2.0E+02	na		2.9E-01	1.2E-01	na		1.1E+02	5.0E+01	na		1.1E+02	5.0E+01	na	
Carbon Tetrachloride ^C	0			na	4.4E+01			na	1.0E+05			na	4.4E+00			na	1.0E+04			na	1.0E+04
Chlordane ^C	0	2.4E+00	4.3E-03	na	2.2E-02	2.6E+02	1.8E+00	na	5.0E+01	6.0E-01	1.1E-03	na	2.2E-03	2.3E+02	4.4E-01	na	5.0E+00	2.3E+02	4.4E-01	na	5.0E+00
Chloride	0	8.6E+05	2.3E+05	na		9.5E+07	9.5E+07	na		2.2E+05	5.8E+04	na		8.1E+07	2.4E+07	na		8.1E+07	2.4E+07	na	
TRC	0	1.9E+01	1.1E+01	na		2.1E+03	4.5E+03	na		4.8E+00	2.8E+00	na		1.8E+03	1.1E+03	na		1.8E+03	1.1E+03	na	

Parameter	Background		Water Qua	ality Criteria			Wasteload	d Allocations		,	Antidegradati	ion Baselin	е	А	ntidegradatior	n Allocations	ŝ		Most Limitin	g Allocation	S
(ug/I unless noted)	Conc.	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН	Acute	Chronic I	HH (PWS)	НН	Acute	Chronic F	HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН
Chlorobenzene	0			na	2.1E+04			na	1.3E+07			na	2.1E+03			na	1.3E+06			na	1.3E+06
Chlorodibromomethane ^C	0			na	3.4E+02			na	7.8E+05			na	3.4E+01			na	7.8E+04			na	7.8E+04
Chloroform ^C	0			na	2.9E+04			na	6.6E+07			na	2.9E+03			na	6.6E+06			na	6.6E+06
2-Chloronaphthalene	0			na	4.3E+03			na	2.6E+06			na	4.3E+02			na	2.6E+05			na	2.6E+05
2-Chlorophenol	0			na	4.0E+02			na	2.4E+05			na	4.0E+01			na	2.4E+04			na	2.4E+04
Chlorpyrifos	0	8.3E-02	4.1E-02	na		9.1E+00	1.7E+01	na		2.1E-02	1.0E-02	na		7.8E+00	4.2E+00	na		7.8E+00	4.2E+00	na	
Chromium III	0	2.4E+02	3.1E+01	na		2.6E+04	1.3E+04	na		5.9E+01	7.6E+00	na		2.2E+04	3.2E+03	na		2.2E+04	3.2E+03	na	
Chromium VI	0	1.6E+01	1.1E+01	na		1.8E+03	4.5E+03	na		4.0E+00	2.8E+00	na		1.5E+03	1.1E+03	na		1.5E+03	1.1E+03	na	
Chromium, Total	0			na				na				na				na				na	
Chrysene ^C	0			na	4.9E-01			na	1.1E+03			na	4.9E-02			na	1.1E+02			na	1.1E+02
Copper	0	4.9E+00	3.5E+00	na		5.4E+02	1.5E+03	na		1.2E+00	8.9E-01	na		4.6E+02	3.7E+02	na		4.6E+02	3.7E+02	na	
Cyanide	0	2.2E+01	5.2E+00	na	2.2E+05	2.4E+03	2.2E+03	na	1.3E+08	5.5E+00	1.3E+00	na	2.2E+04	2.1E+03	5.4E+02	na	1.3E+07	2.1E+03	5.4E+02	na	1.3E+07
DDD ^C	0			na	8.4E-03			na	1.9E+01			na	8.4E-04			na	1.9E+00			na	1.9E+00
DDE C	0			na	5.9E-03			na	1.4E+01			na	5.9E-04			na	1.4E+00			na	1.4E+00
DDT ^C	0	1.1E+00	1.0E-03	na	5.9E-03	1.2E+02	4.1E-01	na	1.4E+01	2.8E-01	2.5E-04	na	5.9E-04	1.0E+02	1.0E-01	na	1.4E+00	1.0E+02	1.0E-01	na	1.4E+00
Demeton	0		1.0E-01	na			4.1E+01	na			2.5E-02	na			1.0E+01	na			1.0E+01	na	
Dibenz(a,h)anthracene ^C	0			na	4.9E-01			na	1.1E+03			na	4.9E-02			na	1.1E+02			na	1.1E+02
Dibutyl phthalate Dichloromethane	0			na	1.2E+04			na	7.2E+06			na	1.2E+03			na	7.2E+05			na	7.2E+05
(Methylene Chloride) ^C	0			na	1.6E+04			na	3.7E+07			na	1.6E+03			na	3.7E+06			na	3.7E+06
1,2-Dichlorobenzene	0			na	1.7E+04			na	1.0E+07			na	1.7E+03			na	1.0E+06			na	1.0E+06
1,3-Dichlorobenzene	0			na	2.6E+03			na	1.6E+06			na	2.6E+02			na	1.6E+05			na	1.6E+05
1,4-Dichlorobenzene	0			na	2.6E+03			na	1.6E+06			na	2.6E+02			na	1.6E+05			na	1.6E+05
3,3-Dichlorobenzidine ^C	0			na	7.7E-01			na	1.8E+03			na	7.7E-02			na	1.8E+02			na	1.8E+02
Dichlorobromomethane ^C	0			na	4.6E+02			na	1.1E+06			na	4.6E+01			na	1.1E+05			na	1.1E+05
1,2-Dichloroethane C	0			na	9.9E+02			na	2.3E+06			na	9.9E+01			na	2.3E+05			na	2.3E+05
1,1-Dichloroethylene	0			na	1.7E+04			na	1.0E+07			na	1.7E+03			na	1.0E+06			na	1.0E+06
1,2-trans-dichloroethylene	0			na	1.4E+05			na	8.4E+07			na	1.4E+04			na	8.4E+06			na	8.4E+06
2,4-Dichlorophenol	0			na	7.9E+02			na	4.7E+05			na	7.9E+01			na	4.7E+04			na	4.7E+04
2,4-Dichlorophenoxy acetic acid (2,4-D)	0			na				na				na				na				na	
1,2-Dichloropropane ^C	0			na	3.9E+02			na	8.9E+05			na	3.9E+01			na	8.9E+04			na	8.9E+04
1,3-Dichloropropene	0			na	1.7E+03			na	1.0E+06			na	1.7E+02			na	1.0E+05			na	1.0E+05
Dieldrin ^C	0	2.4E-01	5.6E-02	na	1.4E-03	2.6E+01	2.3E+01	na	3.2E+00	6.0E-02	1.4E-02	na	1.4E-04	2.3E+01	5.8E+00	na	3.2E-01	2.3E+01	5.8E+00	na	3.2E-01
Diethyl Phthalate	0			na	1.2E+05			na	7.2E+07			na	1.2E+04			na	7.2E+06			na	7.2E+06
Di-2-Ethylhexyl Phthalate ^C	0			na	5.9E+01			na	1.4E+05			na	5.9E+00			na	1.4E+04			na	1.4E+04
2,4-Dimethylphenol	0			na	2.3E+03			na	1.4E+06			na	2.3E+02			na	1.4E+05			na	1.4E+05
Dimethyl Phthalate	0			na	2.9E+06			na	1.7E+09			na	2.9E+05			na	1.7E+08			na	1.7E+08
Di-n-Butyl Phthalate	0			na	1.2E+04			na	7.2E+06			na	1.2E+03			na	7.2E+05			na	7.2E+05
2,4 Dinitrophenol	0			na	1.4E+04			na	8.4E+06			na	1.4E+03			na	8.4E+05			na	8.4E+05
2-Methyl-4,6-Dinitrophenol	0			na	7.65E+02			na	4.6E+05			na	7.7E+01			na	4.6E+04			na	4.6E+04
2,4-Dinitrotoluene ^C Dioxin (2,3,7,8- tetrachlorodibenzo-p-dioxin)	0			na	9.1E+01			na	2.1E+05			na	9.1E+00			na	2.1E+04			na	2.1E+04
(ppq)	0			na	1.2E-06			na	na			na	1.2E-07			na	1.2E-07			na	na
1,2-Diphenylhydrazine ^C	0			na	5.4E+00			na	1.2E+04			na	5.4E-01			na	1.2E+03			na	1.2E+03
Alpha-Endosulfan	0	2.2E-01	5.6E-02	na	2.4E+02	2.4E+01	2.3E+01	na	1.4E+05	5.5E-02	1.4E-02	na	2.4E+01	2.1E+01	5.8E+00	na	1.4E+04	2.1E+01	5.8E+00	na	1.4E+04
Beta-Endosulfan	0	2.2E-01	5.6E-02	na	2.4E+02	2.4E+01	2.3E+01	na	1.4E+05	5.5E-02	1.4E-02	na	2.4E+01	2.1E+01	5.8E+00	na	1.4E+04	2.1E+01	5.8E+00	na	1.4E+04
Endosulfan Sulfate	0			na	2.4E+02			na	1.4E+05			na	2.4E+01			na	1.4E+04			na	1.4E+04
Endrin	0	8.6E-02	3.6E-02	na	8.1E-01	9.5E+00	1.5E+01	na	4.9E+02	2.2E-02	9.0E-03	na	8.1E-02	8.1E+00	3.7E+00	na	4.9E+01	8.1E+00	3.7E+00	na	4.9E+01

Parameter	Background		Water Qua	ality Criteria			Wasteload	Allocations			Antidegradat	tion Baselir	ie	А	ntidegradatio	on Allocation	S		Most Limiti	ng Allocation	s
(ug/I unless noted)	Conc.	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	HH
Endrin Aldehyde	0			na	8.1E-01			na	4.9E+02			na	8.1E-02			na	4.9E+01			na	4.9E+01
Ethylbenzene	0			na	2.9E+04			na	1.7E+07			na	2.9E+03			na	1.7E+06			na	1.7E+06
Fluoranthene	0			na	3.7E+02			na	2.2E+05			na	3.7E+01			na	2.2E+04			na	2.2E+04
Fluorene	0			na	1.4E+04			na	8.4E+06			na	1.4E+03			na	8.4E+05			na	8.4E+05
Foaming Agents	0			na				na				na				na				na	
Guthion	0		1.0E-02	na			4.1E+00	na			2.5E-03	na			1.0E+00	na			1.0E+00	na	
Heptachlor ^C	0	5.2E-01	3.8E-03	na	2.1E-03	5.7E+01	1.6E+00	na	4.8E+00	1.3E-01	9.5E-04	na	2.1E-04	4.9E+01	3.9E-01	na	4.8E-01	4.9E+01	3.9E-01	na	4.8E-01
Heptachlor Epoxide ^C	0	5.2E-01	3.8E-03	na	1.1E-03	5.7E+01	1.6E+00	na	2.5E+00	1.3E-01	9.5E-04	na	1.1E-04	4.9E+01	3.9E-01	na	2.5E-01	4.9E+01	3.9E-01	na	2.5E-01
Hexachlorobenzene ^C	0			na	7.7E-03			na	1.8E+01			na	7.7E-04			na	1.8E+00			na	1.8E+00
Hexachlorobutadiene ^C	0			na	5.0E+02			na	1.1E+06			na	5.0E+01			na	1.1E+05			na	1.1E+05
Hexachlorocyclohexane																					
Alpha-BHC ^C	0			na	1.3E-01			na	3.0E+02			na	1.3E-02			na	3.0E+01			na	3.0E+01
Hexachlorocyclohexane Beta-BHC ^C	0				4 / 5 01				1.15.00				4.75.00				1.15.00				1.15.00
Hexachlorocyclohexane	U			na	4.6E-01			na	1.1E+03			na	4.6E-02			na	1.1E+02			na	1.1E+02
Gamma-BHC ^C (Lindane)	0	9.5E-01	na	na	6.3E-01	1.0E+02		na	1.4E+03	2.4E-01		na	6.3E-02	8.9E+01		na	1.4E+02	8.9E+01		na	1.4E+02
l la constitución de la constitu																					
Hexachlorocyclopentadiene	0			na	1.7E+04			na	1.0E+07			na	1.7E+03			na	1.0E+06			na	1.0E+06
Hexachloroethane ^C	0			na	8.9E+01			na	2.0E+05			na	8.9E+00			na	2.0E+04			na	2.0E+04
Hydrogen Sulfide	0		2.0E+00	na			8.3E+02	na			5.0E-01	na			2.1E+02	na			2.1E+02	na	
Indeno (1,2,3-cd) pyrene	0			na	4.9E-01			na	1.1E+03			na	4.9E-02			na	1.1E+02			na	1.1E+02
Iron	0			na				na				na				na				na	
Isophorone	0			na	2.6E+04			na	6.0E+07			na	2.6E+03			na	6.0E+06			na	6.0E+06
Kepone	0		0.0E+00	na			0.0E+00	na			0.0E+00	na			0.0E+00	na			0.0E+00	na	
Lead	0	3.0E+01	3.4E+00	na		3.3E+03	1.4E+03	na		7.5E+00	8.5E-01	na		2.8E+03	3.5E+02	na		2.8E+03	3.5E+02	na	
Malathion	0		1.0E-01	na			4.1E+01	na			2.5E-02	na			1.0E+01	na			1.0E+01	na	
Manganese	0			na				na				na				na				na	
Mercury	0	1.4E+00	7.7E-01	na	5.1E-02	1.5E+02	3.2E+02	na	3.1E+01	3.5E-01	1.9E-01	na	5.1E-03	1.3E+02	8.0E+01	na	3.1E+00	1.3E+02	8.0E+01	na	3.1E+00
Methyl Bromide	0			na	4.0E+03			na	2.4E+06			na	4.0E+02			na	2.4E+05			na	2.4E+05
Methoxychlor	0		3.0E-02	na			1.2E+01	na			7.5E-03	na			3.1E+00	na			3.1E+00	na	
Mirex	0		0.0E+00	na			0.0E+00	na			0.0E+00	na			0.0E+00	na			0.0E+00	na	
Monochlorobenzene	0			na	2.1E+04			na	1.3E+07			na	2.1E+03			na	1.3E+06			na	1.3E+06
Nickel	0	7.4E+01	8.1E+00	na	4.6E+03	8.1E+03	3.4E+03	na	2.8E+06	1.8E+01	2.0E+00	na	4.6E+02	6.9E+03	8.4E+02	na	2.8E+05	6.9E+03	8.4E+02	na	2.8E+05
Nitrate (as N)	0			na				na				na				na				na	
Nitrobenzene	0			na	1.9E+03			na	1.1E+06			na	1.9E+02			na	1.1E+05			na	1.1E+05
N-Nitrosodimethylamine ^C	0			na	8.1E+01			na	1.9E+05			na	8.1E+00			na	1.9E+04			na	1.9E+04
N-Nitrosodiphenylamine ^C	0			na	1.6E+02			na	3.7E+05			na	1.6E+01			na	3.7E+04			na	3.7E+04
N-Nitrosodi-n-propylamine ^C	0			na	1.4E+01			na	3.2E+04			na	1.4E+00			na	3.2E+03			na	3.2E+03
Parathion	0	6.5E-02	1.3E-02	na		7.2E+00	5.4E+00	na		1.6E-02	3.3E-03	na		6.1E+00	1.3E+00	na		6.1E+00	1.3E+00	na	
PCB-1016	0		1.4E-02	na			5.8E+00	na			3.5E-03	na			1.4E+00	na			1.4E+00	na	
PCB-1221	0		1.4E-02	na			5.8E+00	na			3.5E-03	na			1.4E+00	na			1.4E+00	na	
PCB-1232	0		1.4E-02	na			5.8E+00	na			3.5E-03	na			1.4E+00	na			1.4E+00	na	
PCB-1242	0		1.4E-02	na			5.8E+00	na			3.5E-03	na			1.4E+00	na			1.4E+00	na	
PCB-1248	0		1.4E-02	na			5.8E+00	na			3.5E-03	na			1.4E+00	na			1.4E+00	na	
PCB-1254	0		1.4E-02	na			5.8E+00	na			3.5E-03	na			1.4E+00	na			1.4E+00	na	
PCB-1260	0		1.4E-02	na			5.8E+00	na			3.5E-03	na			1.4E+00	na			1.4E+00	na	
PCB Total ^C	0			na	1.7E-03			na	3.9E+00			na	1.7E-04			na	3.9E-01			na	3.9E-01

Parameter	Background	nd Water Quality Criteria					Wasteload	Allocations		,	Antidegrada	ition Baseline	;	Antidegradation Allocations				Most Limiting Allocations			
(ug/I unless noted)	Conc.	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН
Pentachlorophenol ^C	0	5.3E+00	4.1E+00	na	8.2E+01	5.8E+02	1.7E+03	na	1.9E+05	1.3E+00	1.0E+00	na	8.2E+00	5.0E+02	4.2E+02	na	1.9E+04	5.0E+02	4.2E+02	na	1.9E+04
Phenol	0			na	4.6E+06			na	2.8E+09			na	4.6E+05			na	2.8E+08			na	2.8E+08
Pyrene	0			na	1.1E+04			na	6.6E+06			na	1.1E+03			na	6.6E+05			na	6.6E+05
Radionuclides (pCi/I	0			na				na				na				na				na	
except Beta/Photon) Gross Alpha Activity	0			na	1.5E+01			na	9.0E+03			na	1.5E+00			na	9.0E+02			na	9.0E+02
Beta and Photon Activity	U			Ha	1.5L+01			IId	7.0L+03			Ha	1.5L+00			IIa	9.UL+U2			IIa	9.UE+U2
(mrem/yr)	0			na	4.0E+00			na	2.4E+03			na	4.0E-01			na	2.4E+02			na	2.4E+02
Strontium-90	0			na	8.0E+00			na	4.8E+03			na	8.0E-01			na	4.8E+02			na	4.8E+02
Tritium	0			na	2.0E+04			na	1.2E+07			na	2.0E+03			na	1.2E+06			na	1.2E+06
Selenium	0	2.0E+01	5.0E+00	na	1.1E+04	2.2E+03	2.1E+03	na	6.6E+06	5.0E+00	1.3E+00	na	1.1E+03	1.9E+03	5.2E+02	na	6.6E+05	1.9E+03	5.2E+02	na	6.6E+05
Silver	0	5.5E-01		na		6.0E+01		na		1.3E-01		na		5.0E+01		na		5.0E+01		na	
Sulfate	0			na				na				na				na				na	
1,1,2,2-Tetrachloroethane ^C	0			na	1.1E+02			na	2.5E+05			na	1.1E+01			na	2.5E+04			na	2.5E+04
Tetrachloroethylene ^C	0			na	8.9E+01			na	2.0E+05			na	8.9E+00			na	2.0E+04			na	2.0E+04
Thallium	0			na	6.3E+00			na	3.8E+03			na	6.3E-01			na	3.8E+02			na	3.8E+02
Toluene	0			na	2.0E+05			na	1.2E+08			na	2.0E+04			na	1.2E+07			na	1.2E+07
Total dissolved solids	0			na				na				na				na				na	
Toxaphene ^C	0	7.3E-01	2.0E-04	na	7.5E-03	8.0E+01	8.3E-02	na	1.7E+01	1.8E-01	5.0E-05	na	7.5E-04	6.9E+01	2.1E-02	na	1.7E+00	6.9E+01	2.1E-02	na	1.7E+00
TributyItin	0	4.6E-01	6.3E-02	na		5.1E+01	2.6E+01	na		1.2E-01	1.6E-02	na		4.3E+01	6.5E+00	na		4.3E+01	6.5E+00	na	
1,2,4-Trichlorobenzene	0			na	9.4E+02			na	5.6E+05			na	9.4E+01			na	5.6E+04			na	5.6E+04
1,1,2-Trichloroethane ^C	0			na	4.2E+02			na	9.6E+05			na	4.2E+01			na	9.6E+04			na	9.6E+04
Trichloroethylene ^C	0			na	8.1E+02			na	1.9E+06			na	8.1E+01			na	1.9E+05			na	1.9E+05
2,4,6-Trichlorophenol ^C	0			na	6.5E+01			na	1.5E+05			na	6.5E+00			na	1.5E+04			na	1.5E+04
2-(2,4,5-Trichlorophenoxy)	0			200				20				20				no				20	
propionic acid (Silvex) Vinyl Chloride ^C	-			na	 / 1E -01			na	1 45 .05			na	 / 1E .00			na	1.45.04			na	1.45.04
,	0	4.75.01	4.75.01	na	6.1E+01			na	1.4E+05	1.05.61	1.05.61	na	6.1E+00	4.45.60	4.05.00	na	1.4E+04	4.45.00	4.05.00	na	1.4E+04
Zinc	0	4.7E+01	4.7E+01	na	6.9E+04	5.2E+03	2.0E+04	na	4.1E+07	1.2E+01	1.2E+01	na	6.9E+03	4.4E+03	4.9E+03	na	4.1E+06	4.4E+03	4.9E+03	na	4.1E+06

Notes:

- 1. All concentrations expressed as micrograms/liter (ug/l), unless noted otherwise
- 2. Discharge flow is highest monthly average or Form 2C maximum for Industries and design flow for Municipals
- 3. Metals measured as Dissolved, unless specified otherwise
- 4. "C" indicates a carcinogenic parameter
- 5. Regular WLAs are mass balances (minus background concentration) using the % of stream flow entered above under Mixing Information.

 Antidegradation WLAs are based upon a complete mix.
- 6. Antideg. Baseline = (0.25(WQC background conc.) + background conc.) for acute and chronic
 - = (0.1(WQC background conc.) + background conc.) for human health
- 7. WLAs established at the following stream flows: 1Q10 for Acute, 30Q10 for Chronic Ammonia, 7Q10 for Other Chronic, 30Q5 for Non-carcinogens, Harmonic Mean for Carcinogens, and Annual Average for Dioxin. Mixing ratios may be substituted for stream flows where appropriate.

Metal	Target Value (SSTV)	Ν
Antimony	2.6E+05	n
Arsenic	9.3E+03	g
Barium	na	
Cadmium	3.0E+01	
Chromium III	1.9E+03	
Chromium VI	6.0E+02	
Copper	1.8E+02	
Iron	na	
Lead	2.1E+02	
Manganese	na	
Mercury	3.1E+00	
Nickel	5.0E+02	
Selenium	3.1E+02	
Silver	2.0E+01	
Zinc	1.8E+03	1

Note: do not use QL's lower than the minimum QL's provided in agency guidance

```
Facility = Hanover Courthouse STP
```

Chemical = Ammonia

Chronic averaging period = 30

WLAa = 1900

WLAc = 250

Q.L. = 1

samples/mo. = 2

samples/wk. = 1

Summary of Statistics:

observations = 1

Expected Value = 17

Variance = 104.04

C.V. = 0.6

97th percentile daily values = 41.3680

97th percentile 4 day average = 28.2844

97th percentile 30 day average= 20.5029

< Q.L. = 0

Model used = BPJ Assumptions, type 2 data

No Limit is required for this material

The data are:

17

```
Facility = Hanover Courthouse STP
```

Chemical = chloride

Chronic averaging period = 4

WLAa = 81000000

WLAc = 24000000

Q.L. = 5

samples/mo. = 1

samples/wk. = 1

Summary of Statistics:

observations = 1

Expected Value = 56000

Variance = 1128960

C.V. = 0.6

97th percentile daily values = 136271.

97th percentile 4 day average = 93172.2

97th percentile 30 day average= 67538.9

< Q.L. = 0

Model used = BPJ Assumptions, type 2 data

No Limit is required for this material

The data are:

56000

Attachment H Stream Sanitation Analysis Memoranda

MEMORANDUM

DEPARTMENT OF ENVIRONMENTAL QUALITY Piedmont Regional Office 4949-A Cox Road Glen Allen, Virginia 23060

SUBJECT: Stream Sanitation Analysis - Pamunkey River

Hanover Courthouse STP - VA0062154

TO: Ray Jenkins

FROM: Jennifer Palmore, P.G.

DATE: May 1, 2009

COPIES: File, Curt Linderman

A request for a stream sanitation analysis for the Hanover Courthouse Sewage Treatment Plant (STP) was received on April 17, 2009. The facility discharges via Outfall 001 to the Pamunkey River near Hanover, VA. The discharge is located at rivermile 8-PMK088.63, approximately 0.5 mile upstream of the Route 301 bridge. The facility is currently permitted to discharge 0.08 MGD, but is requesting an expansion to 0.09 MGD. The expansion will be achieved by re-rating the existing plant, rather than by new construction.

Background

At Hanover Courthouse, the Pamunkey River is influenced by the combined Doswell STP/Bear Island Paper Company (BIPCO) discharge which is located on the North Anna River at rivermile 8-NAR003.55. The North Anna River joins the South Anna River to form the Pamunkey River six miles upstream of the Hanover Courthouse discharge. The Doswell STP/BIPCO discharge is permitted under VA0029521 – Doswell STP. Although Hanover County is the permittee, the majority of the flow originates from the BIPCO facility.

The Doswell STP discharge has been modeled several times. Development of the permit limits for the current North Anna discharge is outlined in a 1988 modeling report by HDR Infrastructure. This report summarizes several modeling efforts (1973, 1978, and 1985) as well as performing a new model (1987) for a proposed discharge expansion. The "previous" condition in the report is a combined discharge of 2.5 MGD (1.0 MGD Doswell municipal effluent and 1.5 MGD BIPCO effluent; the previous modeling defined the allowable cBOD₅ effluent limit through an equation based on the flow of the North Anna River. In the 1987 modeling effort, HDR determined that if the discharge is 4.5 MGD with 690 lb/d cBOD₅, it is necessary to oxygenate the effluent; at summer 7Q10 conditions an instream mix of 12.65 mg/L is needed in order to maintain a minimum DO of 5.77 mg/L in the North Anna (see HDR report Section 7.4.2). The model outlined various seasonal scenarios which were considered acceptable at the time of development. The summer scenarios are as follows: 1) when discharging 4.5 MGD and 690 lb/d cBOD₅ the effluent must be supersaturated at 7Q10 conditions (41.91 cfs); 2) when discharging 5.4 MGD and 1351 lb/d cBOD₅, stream flows must exceed 97.7 cfs and upstream dissolved oxygen be at least 7.73 mg/L before supplemental aeration can be turned off; and 3) when discharging the hydrograph-controlled lagoon at 21.2 MGD and 5300 lb/d cBODs, supplemental aeration is not needed if stream flows exceed 222.7 cfs and upstream dissolved oxygen is at least 7.73 mg/L. Although the current VPDES permit allows a daily average flow of 5.2 MGD (4.2 MGD average for BIPCO and 1.0 MGD for Doswell), the

Stream Sanitation Analysis VA0062154 – Hanover Courthouse STP May 1, 2009 Page 2

current limits are still based on the old equation and the oxygenation requirements are not yet in effect. Note: The fact sheet for the draft 2009 VPDES permit for the Doswell STP requires the discharge to be remodeled within the next 5 years.

Hanover Courthouse Modeling Approach

Regional Model 4.11 was chosen to model the Hanover Courthouse discharge. The Regional Model utilizes the Streeter-Phelps equation and is appropriate for use in free-flowing streams with defined channels and steady-state conditions. The modeled segment begins at the discharge and extends downstream six miles to Norman Bridge (rivermile 82.34).

The Regional Model was initially run without the Hanover Courthouse discharge to set the background condition. It was then remodeled with the Hanover Courthouse flow and the two results were compared to ensure that antidegradation will be maintained at all locations in the segment (<0.2 mg/L drop in dissolved oxygen from background conditions.)

Due to the complexities of the Doswell permit, which relies on the flow-based equation, as well as the difficulty establishing the downstream condition because the current effluent flow does not match the flows used in the HDR model, I did not attempt to input the Doswell discharge into the Regional Model. This is not ideal because antidegradation is implemented cumulatively across all permits, in other words the deficit from the Doswell/BIPCO and Hanover Courthouse discharges combined cannot exceed a 0.2 mg/L drop. This current model in effect gives the entire antidegradation allocation to Hanover Courthouse. This will be revised, if necessary, when the Doswell/BIPCO discharge is remodeled.

Although the Doswell discharge was excluded, I did attempt to tie the models together. The HDR model results were used to determine the background river water quality at the Hanover Courthouse outfall. HDR modeled the critical summer condition with a discharge flow of 0.0 MGD to establish the background condition. At the location of the Hanover Courthouse discharge, the model output indicated an instream cBOD_U of 3.27 mg/L, TKN of 0.31 mg/L, and DO of 6.23 mg/L. The TKN and DO results were directly input into the Regional Model. The cBOD_U equates to a cBOD₅ of 1.31 mg/L, assuming a cBOD₅/cBOD_U ratio of 2.5, which is the default assumption in the Regional Model. However, the Regional Model requires a minimum background cBOD₅ of 2 mg/L, which was used in the model.

The channel width, depth, and velocity were obtained from a 1999 Conceptual Engineering Report submitted by BIPCO and prepared by AWARE Environmental. The AWARE model addressed a proposal by BIPCO to separate their discharge from Doswell and relocate their outfall directly to the Pamunkey River.

The model uses a 7Q10 stream flow of 52 cfs from my 4/20/2009 flow frequency determination. Data from station 8-PMK082.34 were used to calculate the 90th percentile temperature.

Note: Hanover Courthouse STP was last modeled in 1994 by D.X. Ren using Regional Model 3.2. Although he also used the BIPCO model's summer 7Q10 results to set the instream water quality background conditions at Hanover Courthouse, my model differs in one approach; I used the zero MGD background condition results, however Ren's model includes the Doswell discharge. I did not use this

Stream Sanitation Analysis VA0062154 – Hanover Courthouse STP May 1, 2009 Page 3

approach for several reasons: 1) as stated above, the modeled scenarios do not match the current flows and permit limits (equation), and 2) the antidegradation policy was applied to the entire model and was not applied at each location. For instance, at the Hanover outfall the 4.5 MGD model allowed a DO of 5.70 mg/L, which is well below the modeled background condition of 6.23 mg/L. This exceeds the allowable 0.2 mg/L drop at that location. The HDR model ran the background condition and determined that the lowest DO in any segment would be 5.97 mg/L. The model was then run until the lowest DO in any segment was above 5.77 mg/L. They did not compare each location to its expected background DO.

Results

The Regional Model results indicate that the antidegradation policy will be maintained if Hanover Courthouse STP discharges 0.09 MGD at technology-based limits and a dissolved oxygen limit of 5.0 mg/L. The maximum dissolved oxygen deficit that will be expected is 0.171 mg/L at 0.3 mile downstream of the discharge. The model documentation is attached.

If you have any questions, please let me know.

REFERENCES

- 1 "Water Quality Modeling, North Anna and Pamunkey River, York River Basin, Virginia", HDR Infrastructure, Inc., HDR Project 317-10-35, January 1988
- 2 "Conceptual Engineering Report in Support of Bear Island Paper Company, L.L.C., VPDES Permit Application, Ashland, Virginia", AWARE Environmental, Inc., AEI Job N106-17, Revised March 1999
- 3 "Proposed Effluent Limits for Hanover Courthouse STP (VA0062154)", DEQ memorandum from D.X. Ren to Curt Linderman, April 25, 1994

REGIONAL MODELING SYSTEM VERSION 4.0 Model Input File for the Discharge

to PAMUNKEY RIVER.

File Information

File Name:

C:\Documents and Settings\jvpalmore\My Documents\models\Hanover Cou

May 01, 2009 Date Modified:

Water Quality Standards Information

Stream Name:

PAMUNKEY RIVER

River Basin:

York River Basin

Section: Class:

Special Standards:

III - Nontidal Waters (Coastal and Piedmont) None

Background Flow Information

Gauge Used:

#01653000 Pamunkey River near Hanover, VA

Gauge Drainage Area: Gauge 7Q10 Flow:

1081 Sq.Mi. 33.6 MGD

Headwater Drainage Area:

1073 Sq.Mi.

Headwater 7Q10 Flow:

33.35134 MGD (Net; includes Withdrawals/Discharges)

Withdrawal/Discharges:

0 MGD

Incremental Flow in Segments:

3.108233E-02 MGD/Sq.Mi.

Background Water Quality

Background Temperature:

25.3 Degrees C

Background cBOD5: Background TKN:

2 mg/l 0.31 mg/l

Background D.O.:

6.23 mg/l

Model Segmentation

Number of Segments:

2

Model Start Elevation:

28.9 ft above MSL

Model End Elevation:

23.7 ft above MSL

Segment Information for Segment 1

Definition Information

Segment Definition:

A discharge enters.

Discharge Name:

HANOVER COURTHOUSE STP

VPDES Permit No.:

Discharger Flow Information

Flow: cBOD5: 0 MGD 25 mg/l

TKN: D.O.: 20 mg/l 5 mg/l

Temperature:

25.3 Degrees C

Geographic Information

Segment Length:

0.63 miles

Upstream Drainage Area:

1073 Sq.Mi. 1074 Sq.Mi.

Downstream Drainage Area: Upstream Elevation:

28.9 Ft.

Downstream Elevation:

28.4 Ft.

Hydraulic Information

Segment Width:

103.245 Ft.

Segment Depth:

1.696 Ft.

Segment Velocity:

0.349 Ft./Sec.

Segment Flow:

33.351 MGD

Incremental Flow:

0.031 MGD (Applied at end of segment.)

Channel Information

Cross Section:

Rectangular

Character:

Mostly Straight

Pool and Riffle:

No

Bottom Type:

Sand

Sludge:

None

Plants:

None

Algae:

None

Segment Information for Segment 2

<u>Definition Information</u>

Segment Definition: A significant change occurs.

Geographic Information

Segment Length: 5.37 miles

Upstream Drainage Area: 1074 Sq.Mi.
Downstream Drainage Area: 1081 Sq.Mi.
Upstream Elevation: 28.4 Ft.

Downstream Elevation: 23.7 Ft.

Hydraulic Information

Segment Width: 65.955 Ft.
Segment Depth: 1.696 Ft.
Segment Velocity: 0.547 Ft./Sec.
Segment Flow: 33.351 MGD

Incremental Flow: 0.218 MGD (Applied at end of segment.)

Channel Information

Cross Section: Rectangular Character: Mostly Straight

Pool and Riffle:

Bottom Type:

Sand
Sludge:

Plants:

Algae:

None

modout.txt

```
"Model Run For C:\Documents and Settings\jvpalmore\My Documents\models\Hanover
  Courthouse 2009 background - 2 segs w BIPCO stats.mod on 5/1/2009 9:19:56 AM'
  "Model is for PAMUNKEY RIVER."
  "Model starts at the HANOVER COURTHOUSE STP discharge."
 "Background Data"
"7Q10", "CBOD5", "TKN", "DO",
"(mgd)", "(mg/1)", "(mg/1)", "(mg/1)",
31 6.23.
                                                                                                                                                           "Temp"
                                                                                                                                                        "deg C"
 "(mga)", "(
33.3513, 2,
                                                                             .31,
 "Discharge/Tributary Input Data for Segment 1"
"Flow", "CBOD5", "TKN", "DO", "Temp"
"(mgd)", "(mg/l)", "(mg/l)", "(mg/l)", "deg C"
                                                                                                                "DO",
"(mg/1)",
,5,
                                                                                                                                                        "Temp"
"deg C"
 "Hydraulic Information for Segment 1"
"Length", "Width", "Depth", "Velocit"
(mi)", "(ft)", "(ft)", "(ft/sec
                                                                            "Depth",
"(ft)",
                                                                                                                    "Velocity"
 "(mi)",
                                                                                                                   "(ft/sec)"
                                   103.245,
                                                                           1.696.
"Initial Mix Values for Segment 1"
"Flow", "DO", "cBOD", "nBOD",
"(mgd)", "(mg/l)", "(mg/l)", "(mg/l)",
33.3513, 6.23, 5, 0,
                                                                                                                                                        "DOSat",
"(mg/1)",
                                                                                                                                                                                                 "Temp"
                                                                                                                                                                                               "deg C"
                                                                                                                                                          8.286,
"Rate Constants for Segment 1. - (All units Per Day)' "k1", "k1@T", "k2", "k2@T", "kn", "kn@T", "BD", .5, .638, .476, .54, .15, .226, 0,
                                                                                                                                                                                                                         "BD@T"
 "Output for Segment 1"
"Segment starts at HANOVER COURTHOUSE STP"
"Total", "Segm."
"Dist.", "Do", "cBOD", "nBo"
(mi)", "(mi)", "(mg/1)", "(
                                                                           "DO",
"(mg/1)",
                                                                                                                                                          "nBOD"
                                                                                                                                                         "(mg/1)"
0,
.1,
                                                                           6.23,
                                    .1,
                                                                           6.249,
                                                                                                                                                          0
                                                                          6.268,
6.287,
 .2,
                                    .2,
                                                                                                                                                          0
 .3,
                                    .3,
                                                                                                                                                          0
                                                                           6.306,
                                    .4,
                                                                                                                                                          0
 .5,
                                   .5,
                                                                           6.325,
                                                                                                                                                          0
 .6,
                                    .6,
                                                                           6.343,
                                                                                                                                                          0
                                                                           6.349.
                                   .63.
"Discharge/Tributary Input Data for Segment 2"
"Flow", "CBOD5", "TKN", "DO", "Temp"
"(mgd)", "(mg/l)", "(mg/l)", "(mg/l)", "deg C"
                                                                                                                                                 "Temp
' "deg C"
"Incremental Flow Input Data for Segment 2"
"Flow", "CBOD5", "TKN", "DO", "Temp"
"(mgd)", "(mg/l)", "(mg/l)", "(mg/l)", "deg C"
.031, 2, .31, ,7.458, 25.3
"Hydraulic Information for Segment 2"
"Length", "Width", "Depth", "Velocity"
"(mi)", "(ft)", "(ft)", "(ft/sec)"
5.37, 65.955, 1.696, .547
"Initial Mix Values for Segment 2"
```

```
odout.cac
"DOSat", "Temp
"(mg/1)", "deg C"
25.3
                                                    modout.txt
"Flow", "DO", "cBOD", "nBOD", "(mgd)", "(mg/1)", "(mg/1)", "(mg/1)", "(mg/1)", 33.3823, 6.35, 5, 0,
"Rate Constants for Segment 2. - (All units Per Day)" "k1", "k1@T", "k2", "k2@T", "kn", "kn@T", "BD", .5, .638, .525, .595, .15, .226, 0,
                                                                              "BD@T"
                                                                              0
"Output for Segment 2"
"Segment starts at "Total", "Segm."
"Dist.", "Dist.", "(mi)",
                           "DO"
                                         "cBOD"
                                                       "nBOD"
                          "(mg/1)",
6.35,
                                        "(mg/1)",
                                                      "(mg/1)"
            0,
.<u>1</u>,
.63,
                                                       0
                           6.363,
.73,
                                                       0
.83,
                          6.376,
                                                       0
                          6.389,
                                         5,
.93,
             .3,
                                                       0
1.03,
             4,
                          6.402,
                                                       0
                          6.415,
1.13,
            .5,
                                                       0
1.23,
             .6,
                          6.427,
                                                       0
1.33,
            .7,
.8,
                          6.439,
                                                       000
1.43,
                          6.451,
1.53,
             .9,
                          6.463,
                          6.475,
                                                       Õ
1.63,
            1,
1.73,
                          6.487,
                                                       Ō
            1.1,
                          6.499,
                                                       0
1.83,
            1.2,
                          6.511,
6.523,
1.93,
            1.3,
                                                       0
2.03,
            1.4,
                                                       Ò
2.13,
            1.5,
                          6.535,
                                                       0
2.23,
                          6.547,
            1.6,
                                                       0
2.33,
                          6.559,
                                                       0
            1.7,
2.43,
            1.8,
                          6.57,
6.581,
                                                       0
2.53,
             1.9,
                                                       0
                          6.592,
            2,
                                                       0
2.63,
2.73,
             2.1,
                          6.603,
                                                       0
2.83,
            2.2,
                          6.614,
                                                       0
2.93,
                          6.625,
3.03,
             2.4,
                                                       0
                          6.636,
                          6.647,
3.13,
             2.5,
                                                       0
                          6.658,
3.23,
            2.6,
                                                       0
3.33,
             2.7,
                          6.669,
                                                       0
            2.8,
3.43,
                          6.68,
                                                       0
3.53,
                                                       0
                          6.691,
            3,
3.1,
3.63,
                          6.702,
                                                       0
3.73,
                          6.713,
6.723,
                                                       0
3.83,
             3.2,
                                                       0
3.93,
             3.3,
                          6.733,
                                                       0
4.03,
                          6.743,
             3.4,
                                                       0
             3.5,
4.13,
                                                       0
                          6.753,
4.23,
             3.6,
                                                       0
                          6.763,
4.33,
            3.7,
                          6.773,
                                                       0
4.43,
             3.8,
                          6.783,
                                                       0
4.53,
             3.9,
                          6.793,
                                                       Ó
4.63,
                                                       Ō
                          6.803,
4.73,
            4.1,
                          6.813,
                                                       0
            4.2,
4.83,
                          6.823,
                                                       0
4.93,
            4.3
                                                       0
                          6.833,
5.03,
            4.4,
                          6.843,
                                                       0
            4.5,
                          6.853,
                                                       0
5.13,
            4.6,
5.23,
                          6.863,
                                                       0
5.33,
                          6.872,
            4.7,
                                                       0
5.43,
            4.8,
                          6.881.
                                                       0
5.53,
            4.9,
                          6.89,
                                                       0
```

Page 2

			modout.txt
5.	6.899,	5,	0
5.1,	6.908,	5,	0
5.2,	6.917.	5,	0
5.3.	6.926.	5.	0
5.37,	6.932,	´5 ,	0
	5.2, 5.3,	5.1, 6.908, 5.2, 6.917, 5.3, 6.926,	5.1, 6.908, 5, 5.2, 6.917, 5, 5.3, 6.926, 5,

[&]quot;END OF FILE"

File Information

File Name:

C:\Documents and Settings\jvpalmore\My Documents\models\Hanover Cou

Date Modified:

April 29, 2009

Water Quality Standards Information

Stream Name:

PAMUNKEY RIVER

River Basin:

York River Basin

Section:

)

Class:

III - Nontidal Waters (Coastal and Piedmont)

Special Standards:

None

Background Flow Information

Gauge Used:

#01653000 Pamunkey River near Hanover, VA

Gauge Drainage Area:

1081 Sq.Mi.

Gauge 7Q10 Flow:

33.6 MGD 1073 Sq.Mi.

Headwater Drainage Area: Headwater 7Q10 Flow:

33.35134 MGD (Net; includes Withdrawals/Discharges)

Withdrawal/Discharges:

0 MGD

Incremental Flow in Segments:

3.108233E-02 MGD/Sq.Mi.

Background Water Quality

Background Temperature:

25.3 Degrees C

Background cBOD5:

2 mg/l

Background TKN:

0.31 mg/l

Background D.O.:

6.23 mg/l⁻¹

Model Segmentation

Number of Segments:

2

Model Start Elevation:

28.9 ft above MSL

Model End Elevation:

23.7 ft above MSL

Segment Information for Segment 1

<u>Definition Information</u>

Segment Definition: A discharge enters.

Discharge Name: HANOVER COURTHOUSE STP

VPDES Permit No.: VA0062154

Discharger Flow Information

Flow: 0.09 MGD cBOD5: 25 mg/l TKN: 20 mg/l D.O.: 5 mg/l

Temperature: 25.3 Degrees C

Geographic Information

Segment Length:
Upstream Drainage Area:
Downstream Drainage Area:
Upstream Elevation:
Downstream Elevation:

28.9 Ft.
Downstream Elevation:
28.4 Ft.

Hydraulic Information

Segment Width: 103.245 Ft.
Segment Depth: 1.696 Ft.
Segment Velocity: 0.349 Ft./Sec.
Segment Flow: 33.351 MGD

Incremental Flow: 0.031 MGD (Applied at end of segment.)

Channel Information

Cross Section: Rectangular Character: Mostly Straight

Pool and Riffle:

Bottom Type:

Sludge:

Plants:

Algae:

No *

Sand

None *

Segment Information for Segment 2

Definition Information

Segment Definition: A significant change occurs.

Geographic Information

Segment Length: 5.37 miles
Upstream Drainage Area: 1074 Sq.Mi.
Downstream Drainage Area: 1081 Sq.Mi.
Upstream Elevation: 28.4 Ft.
Downstream Elevation: 23.7 Ft.

Hydraulic Information

Segment Width: 65.955 Ft.,
Segment Depth: 1.696 Ft. 2.
Segment Velocity: 0.547 Ft./Sec.
Segment Flow: 33.351 MGD

Incremental Flow: 0.218 MGD (Applied at end of segment.)

Channel Information

Cross Section:
Character:
Pool and Riffle:

Rectangular
Mostly Straight
No

Pool and Hiffle:

Bottom Type:

Sludge:

Plants:

Algae:

No

No

No

None

None

```
modout.txt
   "Model Run For C:\Documents and Settings\jvpalmore\My Documents\models\Hanover
   Courthouse 2009 - 2 segs w BIPCO stats.mod on 4/29/2009 5:50:09 PM'
   "Model is for PAMUNKEY RIVER."
    "Model starts at the HANOVER COURTHOUSE STP discharge."
  "Background Data"
"7Q10", "CBOD5", "TKN", "DO",
"(mgd)", "(mg/l)", "(mg/l)", "(mg/l)",
33.3513, 2, .31, 6.23,
                                                                                                                                                                      "Temp"
                                                                                                                                                                . ''deg C''
  "Discharge/Tributary Input Data for Segment 1" "Flow", "CBOD5", "TKN", "DO", "Temp" "(mgd)", "(mg/1)", "(mg/1)", "deg C" .09, 25, 20, ,5, 25.3
  "Hydraulic Information for Segment 1"
"Length", "Width", "Depth", "Velocity"
"(mi)", "(ft)", "(ft)", "(ft/sec)"
                                       103.245,
                                                                             1.696,
  "Initial Mix Values for Segment 1"
"Flow", "DO", "cBOD", "nBOD", "DOSat", "Temp"
"(mgd)", "(mg/l)", "(mg/l)", "(mg/l)", "(mg/l)", "deg C"
33.4413, 6.227, 5.155, .198, 8.286, 25.3
  "Rate Constants for Segment 1. - (All units Per Day)"
"k1", "k1@T", "k2", "k2@T", "kn", "kn@T", "BD",
.5, .638, .476, .54, .15, .226, 0,
                                                                                                                                                                                                                                       "BD@T"
  "Output for Segment 1"
 "Segment starts at HANOVER COURTHOUSE STP"
"Total", "Segm."
"Dist.", "Dist.", "DO", "CBOD", "nBu"
"(mi)", "(mj)", "(mg/1)", "(
                                                                                                                                                                     "nBOD"
                                                                                                                                                                  "(mg/1)"
 0,
                                      0,
.1,
                                                                                6.227,
                                                                                                                         5.155,
                                                                                                                                                                     .198
  .1,
                                                                               6.189,
                                                                                                                          5.098,
                                                                                                                                                                     .197
  .2,
                                       .2,
                                                                               6.152,
                                                                                                                                                                     .196
                                                                                                                           5.041,
  .3,
                                       .3,
                                                                               6.116,
                                                                                                                                                                    .195
 4,
5,
                                       .4,
                                                                                6.136,
                                                                                                                                                                    .194
                                     5,
                                                                               6.155,
                                                                                                                                                                   .193
                                                                                6.174,
                                      6
 .6,
                                                                                                                                                                    .192
  .63,
                                      .63,
                                                                                6.18,
                                                                                                                                                                    .192
"Discharge/Tributary Input Data for Segment 2"
"Flow", "CBOD5", "TKN", "DO", "Temp"
"(mgd)", "(mg/1)", "(mg/1)", "(mg/1)", "deg C"
0, 0, 0, 0, 0
"Incremental Flow Input Data for Segment 2"
"Flow", "CBOD5", "TKN", "DO", "Temp"
"(mgd)", "(mg/l)", "(mg/l)", "(mg/l)", "deg c"
.031, 2, .31, ,7.458, 25.3
"Hydraulic Information for Segment 2"
"Length", "Width", "Depth", "Velocity"
"(mi)", "(ft)", "(ft)", "(ft/sec)"
5.37, 65.955, 1.696, .547
```

"Initial Mix Values for Segment 2"

```
modout.txt
"Flow", "DO", "CBOD", "(mgd)", "(mg/l)", "(mg/l)", 33.4723, 6.181, 5,
                                                       "DOSat",
"(mg/1)"
8.287,
                                         "nBOD"
                                                                      "Temp"
                                         "(mg/1)"
.192,
                                                                     "deg C"
25.3
"Rate Constants for Segment 2. - (All units Per Day)"
"k1", "k1@T", "k2", "k2@T", "kn", "kn@T", "BD",
.5, .638, .525, .595, .15, .226, 0,
                                                                              "BD@T"
"k1",
"Output for Segment 2"
"Segment starts at
"Total", "Segm."
"Dist.", "Dist.",
"(mi)", "(mi)",
                          "DO",
"(mg/1)",
6.181,
                                         "cBOD"
                                                        "nBOD"
                                         "CBOD",
"(mg/1)",
                                                       "(mg/1)"
             0,"
.1,
.63,
.73,
                                                        .192
                                                        .192
                           6.194,
.83,
                           6.207,
                                                        .192
                          6.22,
6.233,
6.246,
6.259,
             .<del>3</del>,
                                                        .192
. 93
                                                        .192
1.03,
             .4
                                                        . 192
1.13,
             .5,
                                                        .192
1.23,
             .6,
                           6.272,
6.285,
             .7,
                                                        .192
1.33,
                                                       .192
1.43,
             .8,
                                                       .192
             .9,
                           6.298,
1.53,
            1,
                           6.311,
                                                       .192
1.63,
                           6.324,
                                                       .192
1.73,
             1.1,
                           6.337,
                                                       . 192
1.83,
             1.2,
                                                        . 192
                           6.349,
1.93,
             1.3,
                          6.361,
6.373,
6.385,
2.03,
             1.4,
                                                        .192
2.13,
2.23,
             1.5,
                                                        .192
                                                        .192
             1.6,
2.33,
2.43,
                           6.397,
            1.7,
                                                        .192
            1.8,
                                                        .192
                           6.409,
2.53,
                           6.421,
                                                        .192
             1.9,
            2,
2.63,
                           6.433,
                                                        .192
2.73,
             2.1,
                           6.445,
                                                        .192
                           6.457,
                                                        .192
2.83,
             2.2,
2.93,
             2.3,
                           6.469,
                                                        .192
             2.4,
3.03,
                           6.481,
                                                        .192
             2.5,
                           6.492,
                                                        .192
3.13,
3.23,
             2.6,
                           6.503,
                                                        .192
                                                        .192
3.33,
             2.7,
                           6.514,
3.43,
             2.8,
                           6.525,
                                                       .192
3.53,
             2.9,
                           6.536,
                                                        .192
                           6.547,
                                                        .192
             3,
3.1,
3.63,
                           6.558,
6.569,
6.58,
                                                        .192
3.73,
3.83,
             3.2,
                                                        .192
3.93,
             3.3,
                                                        .192
4.03,
             3.4,
                           6.591,
                                                        .192
4.13,
                           6.602,
             3.5,
                                                        .192
4.23,
                           6.613,
             3.6,
                                                        .192
4.33,
             3.7,
                           6.624,
                                                        .192
4.43,
                                                        .192
             3.8,
                           6.635,
4.53,
             3.9,
                           6.645,
6.655,
                                                        .192
4.63,
             4,
                                                        .192
             4.1,
                                                        .192
4.73,
                           6.665,
4.83,
                           6.675,
             4.2,
                                                        . 192
4.93,
             4.3,
                           6.685,
6.695,
                                                        .192
             4.4,
5.03,
                                                        .192
             4.5,
                           6.705,
5.13,
                                                        .192
             4.6,
                           6.715,
5.23,
                                                        .192
             4.7,
5.33,
                           6.725,
                                                        .192
                                                        .192
5.43,
             4.8,
                           6.735,
             4.9,
                           6.745,
5.53.
                                                        .192
```

Page 2

				modout.txt
5.63,	5,	6.755,	5,	.192
5.73,	5.1,	6.765.	5,	.192
5.83	5.2,	6.775,	5,	.192
5.93,	5.3,	6.785	5.	.192
6,	5.37,	6.792,	5,	.192

[&]quot;END OF FILE"

- 1 "Water Quality Modeling, North Anna and Pamunkey River, York River Basin, Virginia", HDR Infrastructure, Inc., HDR Project 317-10-35, January 1988 Appendix I, K27.wk1 model output, 0.0 MGD discharge (background) summer condition
- 2 "Conceptual Engineering Report in Support of Bear Island Paper Company, L.L.C., VPDES Permit Application, Ashland, Virginia", AWARE Environmental, Inc., AEI Job N106-17, Revised March 1999 – Attachment D, Hydraulics Summary Reach 8
- 3 "Proposed Effluent Limits for Hanover Courthouse STP (VA0062154)", DEQ memorandum from D.X. Ren, April 25, 1994 Attached model files

D = Doffxp(-K2tt) + KitLo/(K2-K1)t(fxp(-Kitt)-Exp(-K2tt))
+ KntMo/(K2-Kn)t(Exp(-Kat)-Exp(-K2tt)) + SOD/K2t(1-Exp(-K2tt))

K27.HKI

4.09 0.41 0.41 0.22 777 04 10 10 10 10 10 10 10 10 10 10 10 10 10
130 O 181 O
4.09 0.41 0.41 0.22 7.73 94.10 0.00 3.57 0.39 0.39 1.72 4.08 0.40 0.40 0.37 7.58 93.50 0.60 3.53 0.38 0.38 1.73
4.08 0.40 0.40 0.37 7.58 93.50 0.60 3.53 0.38 0.38 1.73 4.06 0.40 0.40 0.52 7.43 92.90 1.20 3.50 0.37 0.37 1.73 4.05 0.39 0.39 0.67 7.28 92.30 1.80 3.46 0.36 0.36 1.73
4.05 0.39 0.39 0.67 7.28 92.30 1.80 3.46 0.36 0.36 1.73 6.22 4.04 0.39 0.39 0.81 7.14 91.70 2.40 3.43 0.33 0.35 1.31 4.22
4.04 0.39 0.39 0.81 7.14 91.70 2.40 3.43 0.35 0.35 1.73
4.04 0.39 0.39 0.81 7.14 91.70 2.40 3.43 0.33 0.35 1.73 4.02 0.38 0.38 0.94 7.01 91.10 3.00 3.40 0.33 0.35 1.73
4.04 0.39 0.39 0.81 7.14 91.70 2.40 3.43 0.35 0.35 1.73 4.02 0.38 0.38 0.94 7.01 91.10 3.00 3.40 0.35 0.35 1.73 4.01 0.38 0.38 1.07 4.88
4.04 0.39 0.39 0.81 7.14 91.70 2.40 3.43 0.35 0.35 1.73 4.02 0.38 0.30 0.94 7.01 91.10 3.00 3.40 0.35 0.35 1.73 4.01 0.38 0.38 1.07 6.88 90.50 3.60 3.36 0.34 0.34 1.73
4.02 0.38 0.38 1.07 6.88 90.50 3.40 3.34 0.34 0.34 4.00 0.38 0.38 1.20 4.75 6.99 6.90 6.38 0.38 1.20 4.75 60.90 4.30 1.31 0.31 0.31
4.02 0.38 0.38 0.94 7.01 91.10 3.00 3.40 0.35 4.01 0.38 0.38 1.07 6.88 90.50 3.40 3.34 0.34 4.00 0.38 0.38 1.20 6.75 89.90 4.20 3.33 0.33 60 30 4.00 3.30 0.33
4.00 0.38 0.38 1.20 6.75 89.90 4.20 3.33 REACH 2 statestratestratestrates
87.90 89.30 88.70 86.10 2.44
2.46
3.1 m1/d K1 0.15 1/dey 50B,mg, 1.2 1/dey Kn 0.34 1/dey 2.4 MILE CBOBU TKN D-TKN DO DEF DO
3.1 mi/d K1 0.15 1/d 1.2 1/day Kn 0.34 1/d HILE CBOBU TKN D-TKN DO DEF B
0.70 4.00 0.39 0.38 1288 REACH 2 RESSESSESSESSESSESSESSESSESSESSESSESSESS
0.60 4.01 0.38 0.70 4.00 0.38 3.1 m1/d 1.2 1/dey
0.50 4.0 0.60 4.0 0.70 4.0 3.1 m1/d 1.2 1/dey
00 00 00 00 00 00 00 00 00 00 00 00 00
3.50 3.30 3.30 3.30 3.00 2.90 2.90 2.90

mg/l; the minimum DO of 6.23 mg/l can be maintained without supplemental effluent oxygenation (Figure 7-4).

7.4.2 Model Simulation For Summer Season

For the months of July, August, and September, the critical temperature is 27°C and the critical background DO is 5.97 mg/l (Table 7-2). The model indicates that the minimuim DO of 5.77 mg/l (5.97 mg/l minus 0.2 mg/l) can be maintained at 7010 flow in the North Anna River for an initial in-stream UCBOD mix of 20.04 mg/l (4.5 MGD and 690 lbs CBOD5 per day), if the initial in-stream DO mix is 12.65 mg/l. For an upstream DO of 7.73 mg/l (Table 7-2), this requires effluent oxygenation to a concentration of 32 mg/l, based on a mass balance at the discharge point.

The model indicates that with the maximum mill discharge, a North Anna flow of 97.7 cfs, and an upstream DO of 7.73 mg/l; the minimum DO of 5.77 mg/l can be maintained in the North Anna River without supplemental effluent oxygenation.

The model indicates that with the maximum combined discharge of the mill and the storage ponds, a North Anna flow of 222.7 cfs, and an upstream DO of 7.73 mg/l; the minimum DO of 5.77 mg/l can be maintained without supplemental effluent oxygenation.

7.4.3 Model Simulation For Fall Season

For the months of October, November, and December, the critical temperature is 16° C and the critical background DO is 7.87 mg/l (Table 7-2). The model indicates that the minimum DO of 7.67 mg/l (7.87 mg/l

13.68 13.68 13.68	r)		SP	`	۵.	ω.	13.68	۳. س	ν, (י י	9 Y	י י	י י י	י י י	9 6	9		r	יי מיי	13.00	3.6	3.6		_	· .			_	_	_	7			4	4	4.	4.	21.41	4.	4.
175.14 175.14 175.14	PAGE NUMBER Feb. 1995		X-SECT AREA	FT-2	75.]	75.1	175.14		 היה	, ,		75.1	75.1	5.1	75.1	75.1		7.	7	175.14	75.1	75.1		11.88	11.88	11.88	11.88	11.88	11.88	1.88	1.88	1.88	1.88	1.88	1.88	1.88	1.88	111.88	1.88	1.88
56.30 56.30 56.30	OUTPUT on 3.21 -		BOTTOM AREA	K-FT-2	9	9	56,30	ייי) (C	9	.0	.3	6.3		6.3	ю. Э.		9	6.3	56.30	6.3	6,3		ū	ū											9	9	36.62 36.62		٥
92.48 92.48 92.48	Versi		VOLUME	 	2.4	21 c	92.43	4	. 2	2.4	4.	4.	4.	4.	4.	₹.		2.4	2.4	92.48	4.	7.4		თ.					70.0				<u> </u>				,	59.07		•
103.245 103.245 103.245	* * * * * * *	-*	WIDTH	• •	103.245	03.24 03.24	03.24	03.24	03.24	03.24	03.24	33.24	3.24	3.24	3.24	13.24 19.24		03.24	03.24	103.245	47.50	47.00	Č	ر م	ָ מַמְּ	ήā	ήσ	í	10	íŏ	, ,	, 0	, o	, 0	, 0	, 0	. 95	65.955	. 95	
1.696 1.696 1.696	IMULATION	UMMARY .	DEPTH	:	1.696	9		. 69	. 69	. 69	69	69.	69	69.		0		969.	969.	1.696	969		Ċ	900	969	969	969	969	909	969	969	969	909	969	969	969	969	1.696	969	
0.017 0.017 0.017	STATE S	HYDRAULICS S	TRVL TIME DAY		0.017	50	0.	0.	0.	5	5 5	5 6	5 5	5 5	5 6	† >		0.017	5.	<u> </u>		•	_		. 0	0	0	0	0	0	0	0	0	0	0	Ç	0	0.011	0	
0.349 0.349 0.349	** STEADY	** HYDE	VEL FPS		0.349	, ψ.	.34	ъ.	.34	2.5	 4	2. 4	יי קיי		4.5	;		0.349		. J.	34		547	547	.547	.547	.547	.547	. 547	547	547	547	547	547	547	547	547	0.547	547	
00.00	*		INCR FLOW CFS	•	0.00		٠.	٠.	، ب	, 0	, c	, c	2	0	9	ı		0.00	, 0	. 0	0			٠.	٦.	٠.	۳.	_	٠.	_	v	Ç	0	0	0	0	0	0.00	\circ	
0.00	ION ROUTING MODEL		POINT SRCE CFS	•	0.00	٠.	٠,	ر	J (, c	, C	, C	, C	0	0			0.00		? •	0,		Ξ.		Ξ.	۳.	٠.	٠.	٠.	•	Ų	O	\circ	0	9	0	¬ (00.0	_	
	SIMULATION QUALITY ROUT		FLOW		61.17	Ξ	3		- -:	! "	: -	! -	! =	. –	۲.		,	61.17	1.1	1.1	1.1					•				σ,	_ '	~ ,		٠,	⊸,	٦,	٦,	61 17	-	
90.1 90.0 89.9	TY SI		END LOC MILE	ď	89.70	9.	a, .		, ,		. 0	5	8.	. 7	9.			88.40	8.3	8.2	8.1		. 6		~ ·	· .	~ .	:		.,	?	Ξ.		n o	יים	•	o ur	86.40		
90.06	REAM OU AL-2E 9		BEGIN LOC MILE	σ	89.80	יין ריין			יי יי	2.6	.1	0.	9.	. 8			٥	88.50	8.4	8.3	8.2		88.10	œ i									7 0		٠ ar		ع ٠	. 73		
•	ST		ELE			, ,	7 -	-	1	_	-	-	_	-	7		-	→ ~	m	4	'n		,-	2	7) T	7 U	י ר) C	~ a	- σ	, -	2 <u>-</u>	11	1 [4	. 5	16	17		
φφω			RCH	9	٠٠٠	9 (ט ע	9	9	9	9	9	9	Q	9		۲	·	7	7	_		œ :	20 (o a	o a	ο α	α	α	α) C	o ca	> oc	00	· cc	ထ	ω	89		
80 81 82			BLE	60 60	84	85	9 6	60	68	90	91	95	93	94	95		96	97	98	66	100		101																	

21.41 21.41 21.41 21.41 21.41	d.	DSPRSN COEF	21.	, , ,	, ,	4 6 .	1 . 4 .	4.	4.	21.41 21.41 21.41	_				<u>`</u> .	· ·		4 4		4.	ব ব	4	4	21.41	J.
111.68 111.88 111.88 111.88	PAGE NUMBER Feb. 1995	X-SECT AREA FT.2.2		11.8	11.8	11.6	11.8	11.8	8.11	111.88	-			11.		11.	11.	1. T		Ξ	- B	8.6	1.8 1.8	111.88	•
62 62 62 62	OUTPUT on 3.21 -	BOTTOM AREA K-FT-2	36.62	9.6	9 9	(0 (101	9 6	9 9	36.62	ý	ن ف	 	6	 .ac		10.14					. u		36.62 36.62	
59.07 59.07 59.07 59.07	Versi	VOLUME K-FT-3	59.07 59.07	o o	9.9	0.0	0.0		~ ~	0.0	6	ი ი		<u> </u>			~ ~				0.	00	20	59.07 59.07	
65.955 65.955 65.955 65.955	** ** **	WIDTH FT	65.955 65.955	م م	9.9	96.	9	. 95	. 95	. 95 . 95	6,	ன ர ம	9	ص <u>م</u>	, 6	9, 9	9 0	6	9, 9	96	26.	65.955 65.955	36.		
1,696 1,696 1,696 1,696 1,696	SIMULATION SUMMARY **	DEPTH FT	1.696	9 69 6	9.00	96.	69	96	9 6	69 9	969.	. 696 . 696	969	. 696 . 696	969	696	969	969	969 696	969	696 696	1.696	969	969	
0.011 0.011 0.011 0.011 0.011	STATE	TRVL TIME DAY	0.011	000	363	50	9	0.5	56	010	0.0	90	0	20	0	00	0	<u></u>	55	0.5	55	0.011	50	01	
0.547 0.547 0.547 0.547 0.547	* * * *	VEL	0.547	S	147	u ru	5.4	5.4	54.	U 12	.547	.547	.547	547	.547	547	547	547 547	547	547	547	0.547	547	547	
0.00	* * *	INCR FLOW CFS	0.00	~ ~	00	900	90	00	00	0	0.00		٠. ١		٠, ١	ب ر	0	20	0	\circ	\circ	0	00	0	
.30 61.17 0.00 .20 61.17 0.00 .10 61.17 0.00 .00 61.17 0.00 .90 61.17 0.00	FING MODE	POINT SRCE CFS	0.00		0.0	, 0, 0	0	00	00	0	0.00			. —	~ `	ب ر	9	ں ر	0	-	0	00	\circ	0	
61.17 61.17 61.17 61.17 61.17 11ATION	SITY ROUT	FLOW	61.17 61.17 61.17	33		: -: -	1 1			! -:	61.17						7		<u> </u>	7.	!!	7.		٠.	
6.40 86.30 5.30 86.20 5.20 86.10 5.10 86.00 5.00 85.90		END LOC MILE	85.80 85.70 85.60	R 10	10.10				φ.υ	4	84.30	· ·	- O	w 1	~ ~	~	~				₿.	7		4.	
1 86.40 2 86.30 3 86.20 4 86.10 5 86.00	u-2e sti	BEGIN LOC MILE	85.90 85.80 85.70		7. 5.		0.0	n 00	6	٠ ب	84.4084.30	\ \ \	: -	m	9 (-	~ .	~ ~	. (1)	2 -	10	0,0	» ر.	9	s.	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mo O	ELE NUM	9 7 9							7	1.2	mΨ	r 5	9 6	~ &	an c	11	12	13 14	15	16	7 1 8	19	07	
21098		E RCH D NGM	0.00		m m	O -4					10		, , ,		, ,-1					7			, → r	-	
11 11 12 12 12 12 0		ELE	12,12,12,12,12,12,12,12,12,12,12,12,12,1								138 139														

DEPARTMENT OF ENVIRONMENTAL QUALITY Piedmont Regional Office

4900 Cox Road Glen Allen, VA 23060

804/527-5020

SUBJECT:

Proposed Effluent Limits for Hanover Courthouse STP (VA0062154)

TO:

Curt Linderman

FROM:

D. X. Ren (9)

DATE:

April 25, 1994

COPIES:

Allan Brockenbrough, Jon Van Soestbergen, Technical Services, File

Modeling Purpose

Hanover County submitted a VPDES Permit Application for an expansion at the Courthouse STP.

The purpose of this memorandum is to develop effluent limits for a discharge flow of 0.08 MGD.

Background Information

Since 1978, at least five water quality studies have been conducted for the North Anna/South Anna/Pamunkey River area, including the Streeter-Phelps Model (CBOXYSAG) and Qual-2E Model (see reference). However, up to now, no basinwide model has been developed for basinwide planning purposes.

Hanover Courthouse STP is within this study area. The discharge is located 9.2 miles downstream of a major municipal/industrial discharge-Doswell WWTP's. Therefore, the Doswell discharge has a significant impact on the background water quality at the Hanover courthouse discharge point. The determination of the background headwater flow and water quality at the Hanover Courthouse STP depends on these aforementioned studies, and the information regarding the regulated North Anna River Gauge and the Doswell WWTP effluent limitations.

Therefore, the information collected for assembling a dataset for modeling the Hanover Courthouse STP discharge is based on the aforesaid technical documents.

Four Water Quality Models were considered in selecting a model for the subject discharge:

- 1) HRD Model on Lotus version provided by the Bear Island Paper Company in 1988;
- 2) CBOXYSAG Model on Mainframe developed by SWCB in 1970s;
- 3) Steady State model (version 4.2 and 5.2) developed by SWCB during 1989-1992;
- 4) The Regional Model (version 3.2) developed by SWCB in 1992;

SUBJECT:Proposed Effluent Limits for Hanover Courthouse STP (VA0062154) Page 2

Model Selection

All of these models are based on the Streeter-Phelps Equation. The Regional Model was selected by me to determine the effluent limits for the Hanover Courthouse STP discharge based on the following reasons:

- Suitability: The subject increased discharge flow is insignificant (0.08 MGD) compared to Doswell WWTP discharge flow.
- b) Compatibility: The Regional model is capable of reflecting the impact caused by the upstream discharge. Predicted water quality data was abstracted from previous model results and used as an input for the background condition in the regional model.

Site Inspection

The proposed increased discharge will be located at the same site as the current outfall. The WBS is F14-01.

A site inspection was performed on April 14, 1994 to verify the selected channel's characteristics. It is my observation that the the segment selected for the Regional model looks very homogeneous. The flow of the Pamunkey River provides significant dilution capacity at the discharge point. The current wastewater treatment pattern, extended aeration process, produces a good quality effluent. Also, all information needed for the modeling at this time were taken from SWCB and BIP modeling documents.

7Q10 Flow Estimates:

The USGS gauge 01673000 Pamunkey River near Hanover, Virginia was selected as the reference gauge to determine 1Q10, 7Q10, 30Q5, and harmonic mean flows for the discharge point. The high flow months are December through April.

Gauge Drainage Area = 1081 square miles

1Q10 = 45.9 MGD or 71 cfs
Dry 7Q10 = 47.2 MGD or 73 cfs
High Flow 1Q10 = 112.5 MGD or 174 cfs
High Flow 7Q10 = 149.3 MGD or 231 cfs
30Q5 = 62.7 MGD or 97 cfs
Harmonic Mean = 228.8 MGD or 354 cfs

At the proposed discharge point:

Drainage Area = 1070.63 square miles

1Q10 = 45.2 MGD or 70 cfs
Dry 7Q10 = 46.5 MGD or 72 cfs
High Flow 1Q10 = 111.2 MGD or 172 cfs
High Flow 7Q10 = 148.0 MGD or 229 cfs
30Q5 = 62.1 MGD or 96 cfs
Harmonic Mean = 226.9 MGD or 351 cfs

SUBJECT:Proposed Effluent Limits for Hanover Courthouse STP (VA0062154) Page 3

Antidegradation Policy:

Based on the BIPCO modeling report, the antidegradation policy was applied at the discharge point at the confluence of the North Anna River with the Little River (page 79). The minimum allowable DO in the receiving river during any given season is 0.2 mg/l below the naturally occurring DO sag. For the month of July, August and September, the critical temperature is 27°C and the critical background DO is 5.97 mg/l at the BIPCO discharge point. (see BIPCO Modeling Report, page 94 and Table 7-2).

According to the BIPCO model, in the summer season, background water at Hanover STP discharge point (RM=88.7) are: CBODu= 10.97 mg/l, CBODu/CBOD $_5$ = 4.5, CBOD $_5$ = 2.44 mg/l, TKN= 1.15 mg/l, DO= 5.71 mg/l. Therefore this information was used in the Regional Model as upstream discharge input for the Hanover Courthouse STP discharge.

To satisfy the antidegradation policy in the Regional Model, the minimum DO will be maintained at 5.098 mg/l at the DO sag with the Hanover Courthouse discharge comparing to the baseline at DO sag of 5.143 mg/l if without the subject discharge.

According to the retrieved information from the representive AQM station 8-PMK082.34, no water quality violations were found. The receiving water is considered to be a high quality (Tier 2) waters. For an increased discharge, the antidegradation review is required based on the DEQ Headquarter's guideline (VR-680-21-01.3).

Modeling Approach

As mentioned above, the regional model was selected to simulate the subject discharge. The model starts at the Hanover Courthouse STP discharge point on the Pamunkey River (Rivermile 88.1) and ends at the Pamunkey River near Norman Bridge (Rivermile 82.1). The actual total length of the simulated segment is about 5.77 miles. Only one segment was simulated in the model.

The background water quality condition for the subject discharge point was taken from the BIPCO model (Lotus version, K27.wk1) under the summer critical temperature 27°C. Year round temperature, pH and Mean Hardness were determined based on AQM Station PMK082.34: Temperature = 25.4°C, pH = 7.7 S.U., Mean Hardness = 35.4 mg/l. In the Regional Model, a temperature of 25.4°C was used based on the representive AQM information.

The following effluent limits are the result of this modeling run:

Hanover Courthouse STP

 $\begin{array}{lll} Q & = & 0.08 \text{ MGD} \\ BOD_5 & = & 30 \text{ mg/l} \\ DO & = & 5.0 \text{ mg/l} \end{array}$

@ Temperature = 25.4° C

Modeling results indicated that the Model is able to offer as much as TKN= 17 mg/l for this subject discharge for DO concerns. Also, a run of the WLA2 program using data provided by Hanover County indicated no limits are needed for Ammonia Nitrogen. Therefore a TKN limit will not be included in the permit limits.

The computer printout copy, the topographic map, and schematic showing the discharge point are attached for your reference.

SUBJECT:Proposed Effluent Limits for Hanover Courthouse STP (VA0062154) Page 4

If you have any questions, please let me know.

Reference:

- 1) Water Quality Modeling Report, North Anna and Pamunkey River, Prepared by HRD Infrastructure Inc. for Bear Island Paper Conpany, January 1988;
- Water Quality Intensive Survey and Modeling, Pamunkey River, Prepared by Virginia State Water Control Board, 1979;
- Water Quality Intensive Survey and Modeling, South Anna River, Prepared by Virginia State Water Control Board, 1982;
- Water Quality Intensive Survey and Modeling, Totopotomoy Creek, Prepared by Virginia State Water Quality Modeling Report, Pamunkey River, Prepared by Black and Veatch, prepared for Hanover County, 1989;
- 5) Water Quality Modeling Report, Pamunkey River, Prepared by B&V Consultant for Hanover County, 1989.

04/19/91 final draft (DA at the di point was u

REGIONAL MODELING SYSTEM

VERSION 3.2

DATA FILE SUMMARY

THE NAME OF THE DATA FILE IS: HANOVERS. MOD

THE STREAM NAME IS: PAMUNKEY RIVER
THE RIVER BASIN IS: YORK RIVER
THE SECTION NUMBER IS: 3
THE CLASSIFICATION IS: III

STANDARDS VIOLATED (Y/N) = NSTANDARDS APPROPRIATE (Y/N) = Y

DISCHARGE WITHIN 3 MILES (Y/N) = Y

UPSTREAM DISCHARGE FLOW = 6.56 MGD BOUNDARY BOD5 = 2.44 MG/L BOUNDARY FKN = 1.15 MG/L BOUNDARY D.O. = 5.71 MG/L

THE DISCHARGE BEING MODELED IS: HANOVER COURTHOUSE STP

PROPOSED LIMITS ARE:
 FLOW = .08 MGD
 BODS = 25 MG/L 4
 TKN = 17 MG/L
 D.O. = 5 MG/L

THE NUMBER OF SEGMENTS TO BE MODELED = 1

7010 WILL BE CALCULATED BY: DRAINAGE AREA COMPARISON
THE GAUGE NAME IS: USGS GAGE 01673000 NEAR HANDVER
GAUGE DRAINAGE AREA = 1081 SQ.MI.
GAUGE 7010 = 47.19 MGD
DRAINAGE AREA AT DISCHARGE = 1070.63 SQ.MI.

STREAM A DRY DITCH AT DISCHARGE (Y/N) = M ANTIDEGRADATION APPLIES (Y/N) = M

ALLOCATION DESIGN TEMPERATURE = 25.4 °C

SEGMENT INFORMATION

####### SEGMENT # 1 #######

SEGMENT ENDS BECAUSE: THE MODEL ENDS

SEGMENT LENGTH = 5.77 MI

SEGMENT WIDTH = 44.988 FT SEGMENT DEPTH = 1.956 FT SEGMENT VELOCITY = .947 FT/SEC

DRAINAGE AREA AT SEGMENT START = 1081 SQ.MI. DRAINAGE AREA AT SEGMENT END = 1085.1 SQ.MI.

ELEVATION AT UPSTREAM END = 29.02 FT ELEVATION AT DOWNSTREAM END = 23.91 FT

THE CROSS SECTION IS: RECTANGULAR THE CHANNEL IS: MOSTLY STRAIGHT

POOLS AND RIFFLES (Y/N) = N

THE BOTTOM TYPE = SAND SLUDGE DEPOSITS = NONE AQUATIC PLANTS = NONE ALGAE OBSERVED = NONE WATER COLORED GREEN (Y/N) = N

REGIONAL MODELING SYSTEM 04-19-1994 12:00:27

Ver 3.2 (OWRM - 9/90)

1070?

1

REGIONAL MODELING SYSTEM VERSION 3.2 MODEL SIMULATION FOR THE HANOVER COURTHOUSE STP DISCHARGE TO PAMUNKEY RIVER COMMENT: 04/19/1994 DA at the discharge point was updated

THE SIMULATION STARTS AT THE HAMOVER COURTHOUSE STP DISCHARGE

FLOW = .08 MGD cBOD5 = 25 Mg/L TKN = 17 Mg/L D.O. = 5 Mg/L

**** THE MAXIMUM CHLORINE ALLOWABLE IN THE DISCHARGE IS 6.437 Mg/L ****

THE SECTION BEING MODELED IS 1 SEGMENT LONG RESULTS WILL BE GIVEN AT 0.1 MILE INTERVALS

THE 7010 STREAM FLOW AT THE DISCHARGE IS 53.29731 MGD THE DISSOLVED OXYGEN OF THE STREAM IS 5.710 Mg/L THE BACKGROUND cBODU OF THE STREAM IS 6.1 Mg/L THE BACKGROUND nBOD OF THE STREAM IS 0 Mg/L

TEMP. DO-SAT BENTHIC ELEV. SEG. LEN. K2 K1 Mg/L Ft °C Mg/L F/5 1/1) 1/0 1/0 P 3 ---.... 25.40 8.274 5.77 0.758 0.531 0.500 0.150 0.000 26.47

(The K Rates shown are at 20°C ... the model corrects them for temperature.)

RESPONSE FOR SEGMENT 1

经餐帐帐货货货货货货货货货货货货货货货货货

TOTAL STREAMFLOW = 53.3773 MGD (Including Discharge)

关并关系关系关系关系关系关系关系关系关系关系

DISTANCE FROM HEAD OF SEGMENT (MI.)	TOTAL DISTANCE FROM MODEL BEGINNING (MI.)	DISSOLVED OXYGEN (Mg/L)	cBODu (Mg/L)	nBODu (Mg/L)
0.900 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.100 1.200 1.300 1.400 1.500 1.400 1.500 1.600 1.700 2.100 2.300 2.400 2.300 2.400 2.500 2.600 2.700 2.300 3.400 3.500 3.400 3.500 3.700 3.300 3.400 3.500 3.700 3.700 3.300 3.400 3.700 3.400 3.700 3.400 3.700 3.400 3.700 3.400 3.700 3.400 3.700 3.400	FROM MODEL BEGINNING (HI.) 0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.100 1.200 1.300 1.400 1.300 1.400 1.500 1.700 1.800 1.700 1.800 2.100 2.200 2.300 2.400 2.700 2.300 3.300 3.400 3.500 3.700 3.800 3.700	5.709 5.689 5.670 5.633 5.614 5.578 5.578 5.578 5.580 5.578 5.580 5.614 5.381 5.381 5.381 5.381 5.381 5.381 5.381 5.381 5.381 5.381 5.382 5.284 5.285 5.281 5.280 5.281 5.281 5.281 5.281 5.281 5.381 5.	6.185 6.153 6.089 6.027 5.995 5.965 5.965 5.965 5.97 5.843 5.843 5.783 5	0.091 0.090 0.090 0.090 0.090 0.090 0.089 0.089 0.088 0.088 0.088 0.088 0.087 0.087 0.087 0.087 0.087 0.087 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.085
4. (44	4.100	Os AUG	WE NAM	

-5,300 5,300 5,d00 5,d00 ₹ 5,000 V.V8	5.100	5.100	5.226	5.00 0	0.081
	5.200	5.200	5.240	5.00 0	0.081
	5.300	5.300	5.255	5.000	0.081

5.400	5.400	5.269	5.000	0.081
5.500	5.500	5.284	5.000	0.081
5.600	5.600	5.298	5.000	0.081
5.700	5.700	5.313	5.000	0.081
5.770 5.770	5.770	5.323	5.000	0.081

REGIONAL MODELING SYSTEM 04-13-1394 12:01:46

Ver 3.2 (OWRM - 9/90)

DATA FILE = HAMOVER2.MOD

Attachment I

VDH Comments

RECEIVED PRO

COMMONWEALTH of VIRGINIA

Marissa J. Levine, MD, MPH, FAAFP State Health Commissioner

Director, Office of Drinking Water

DEPARTMENT OF HEALTH

OFFICE OF DRINKING WATER

East Central Field Office

300 Turner Road Richmond, VA 23225 Phone: 804-674-2880 Fax: 804-674-2815

DATE:

John J. Aulbach II, PE

June 6, 2014

FROM:

Bennett K. Ragnauth, P.E., Engineering Field Director

East Central Field Office, Office of Drinking Water

TO:

Ms.Laura Gaffi, VPDES Permit Writer

Department of Environmental Quality, Piedmont Regional Office

4949-A Cox Road Glen Allen, VA, 23060

CITY/COUNTY:

Hanover County

APPLICANT:

Mr. Cecil R. Harris, Jr., County Administrator

PERMIT TYPE:

VPDES

APPLICATION TYPE:

Re-Issuance (Existing) Hanover Courthouse STP

PROJECT: SUBJECT:

Review response for DEQ's permit application No. VA0062154

Our office has reviewed the application for Hanover Courthouse Wastewater Treatment Plant (WWTP) located south of Pamunkey River and north of Normans Bridge Road (Route 614), east of Hanover Courthouse Road (Route 301) and west of Route 601. The permit is for a discharge of disinfected effluent from the secondary clarifiers at Hanover Courthouse WWTP to the Pamunkey River which discharges to the York River, a tributary of the Chesapeake Bay.

There are no apparent impacts to waterworks sources as a result of this permit.

Other comments:

Reviewer: HGB

Hanover Co. Health Dept., Attn. Environmental Health Manager

ec: cc:

VDH, ODW - Central Office

Mr. Cecil R. Harris, Jr., Hanover County Administrator

R:\PD15A\05-ProjectReview\01-ApplicationsDEQ\01-VPDES Appl\Hanover Courthouse STP14.docx

Attachment J

DCR Comments

COMMONWEALTH of VIRGINIA

DEPARTMENT OF CONSERVATION AND RECREATION

Richmond, Virginia 23219
(804) 786-6124

a various your strong as new with the first the second of the first single with the single of the si

Laura Galli DEQ-PRO 4949-A Cox Road Glen Allen, VA 23060

Re: VA0062154, Hanover Courthouse STP Permit Reissuance

Dear Ms. Galli:

The Department of Conservation and Recreation's Division of Natural Heritage (DCR) has searched its Biotics Data System for occurrences of natural heritage resources from the area outlined on the submitted map. Natural heritage resources are defined as the habitat of rare, threatened, or endangered plant and animal species, unique or exemplary natural communities, and significant geologic formations.

According to the information currently in our files, the Pamunkey River – Mechumps Creek Stream Conservation Unit (SCU) is located downstream from the project site. SCUs identify stream reaches that contain aquatic natural heritage resources, including 2 miles upstream and 1 mile downstream of documented occurrences, and all tributaries within this reach. SCUs are also given a biodiversity significance ranking based on the rarity, quality, and number of element occurrences they contain. The Pamunkey River – Mechumps Creek SCU has been given a biodiversity ranking of B5, which represents a site of general significance. The natural heritage resource associated with this site is:

Lampsilis cariosa

Yellow lampmussel

G3G4/S2/NL/NL

The Yellow lampmussel ranges from Nova Scotia to Georgia in Atlantic slope drainages (NatureServe, 2009). In Virginia, it is recorded from the Roanoke, Chowan, James, York, and Potomac drainages. It is found in larger streams and rivers where good currents exist over sand and gravel substrates and in small creeks and ponds (Johnson, 1970).

In addition, the Eastern lampmussel (*Lampsilis radiata*, G5/S2S3/NL/NL) has been historically documented downstream from the project site. The Eastern lampmussel is a freshwater mussel which inhabits river systems in areas with substrates composed of silt, sand, cobble, gravel and exposed bedrock (NatureServe, 2009). This species has a wide range, from eastern Canada west to Ontario and Quebec and south to South Carolina (NatureServe, 2009). In Virginia, there are records from the Chowan and York River drainages.

Williams, J.D., M.L. Warren, Jr., K.S. Cummings, J.L. Harris, and R.J. Neves. 1993. Conservation status of freshwater mussels of the United States and Canada. Fisheries 18: 6-9.

Attachment K
2011 Warning Letter

COMMONWEALTH of VIRGINIA

DEPARTMENT OF ENVIRONMENTAL QUALITY

Douglas W. Domenech Secretary of Natural Resources PIEDMONT REGIONAL OFFICE 4949-A Cox Road, Glen Allen, Virginia 23060 (804) 527-5020 Fax (804) 527-5106 www.deq.virginia.gov

David K. Paylor Director

Michael P. Murphy Regional Director

November 3, 2011

Mr. David F. Van Gelder, Chief of Operations and Maintenance Hanover County Department of Public Utilities 7516 County Complex Road Hanover, VA 23069-1530

WARNING LETTER

RE: WL # W2011-11-P-1001

Hanover Courthouse Waste Water Treatment Plant (WWTP) VPDES Permit No. VA0062154 (reissued/effective November 3, 2009)

Dear Mr. Van Gelder:

The Department of Environmental Quality (DEQ or the Department) has reason to believe that the Hanover County may be in violation of the State Water Control Law and Regulations at the Hanover Courthouse WWTP.

This letter addresses conditions at the facility named above, and also cites compliance requirements of the State Water Control Law and Regulations. Pursuant to Va. Code § 62.1-44.15(8a), this letter is not a case decision under the Virginia Administrative Process Act, Va. Code § 2.2-4000 *et seq.* (APA).

a) The Discharge Monitoring Report (DMR) submitted for the September 2011 monitoring period listed an E. coli average concentration of 1371 #C/ml, versus a permit allowable average concentration of 126 #C/ml.

Va. Code § 62.1-44.23 of the State Water Control Law provides for an injunction for any violation of the State Water Control Law, any State Water Control Board rule or regulation, an order, permit condition, standard, or any certificate requirement or provision. Va. Code §§ 62.1-44.15 and 62.1-44.32 provide for a civil penalty up to \$32,500 per day of each violation of the same. In addition, Va. Code § 62.1-44.15 authorizes the State Water Control Board to issue

Hanover Courthouse WWTP VPDES Permit No. VA0062154 Warning Letter Page 2 of 2

orders to any person to comply with the State Water Control Law and regulations, including the imposition of a civil penalty for violations of up to \$100,000. Also, Va. Code § 10.1-1186 authorizes the Director of DEQ to issue special orders to any person to comply with the State Water Control Law and regulations, and to impose a civil penalty of not more than \$10,000. Va. Code §§ 62.1-44.32(b) and 62.1-44.32(c) provide for other additional penalties.

The Court has the inherent authority to enforce its injunction, and is authorized to award the Commonwealth its attorneys' fees and costs.

As adequate information was provided with the DMR submitted for the September 2011 monitoring period, no response to this correspondence is required. However, if additional information has been obtained, please provide it, in writing, to DEQ within 20 days of the date of this letter. It is DEQ policy that appropriate, timely, corrective action undertaken in response to a Warning Letter will avoid adversarial enforcement proceedings and the assessment of civil charges or penalties.

Please advise us if you dispute any of the observations recited herein or if there is other information of which DEQ should be aware. In the event that discussions with staff do not lead to a satisfactory conclusion concerning the contents of this letter, you may elect to participate in DEQ's Process for Early Dispute Resolution. Also, if informal discussions do not lead to a satisfactory conclusion, you may request in writing that DEQ take all necessary steps to issue a final decision or fact finding under the APA on whether or not a violation has occurred. For further information on the Process for Early Dispute Resolution, please visit the Department's website under "Laws & Regulations" and "DEQ regulations" at: http://www.deq.virginia.gov/export/sites/default/regulations/pdf/Process for Early Dispute Resolution

Your contact at DEQ in this matter is **Mr. Mike Dare**. Please direct written materials to his attention. If you have questions or wish to arrange a meeting, you may reach Mr. Dare directly at (804) 527-5055 or via email at **Michael.Dare@deq.virginia.gov**.

Sincerely,

Kyle Ivar Winter, P.E.

Deputy Regional Director

M. Dare – DEQ-PRO Water Compliance (electronic copy)

8260532.pdf or ask the DEO contact listed below.

R. Jenkins – DEQ-PRO Water Permitting (electronic copy)

File/ECM

cc: